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Abstract
This paper considers the optimal adaptive allocation of measurement effort for identifying

the best among a finite set of options or designs. An experimenter sequentially chooses designs
to measure and observes noisy signals of their quality with the goal of confidently identifying
the best design after a small number of measurements. This paper proposes three simple and
intuitive Bayesian algorithms for adaptively allocating measurement effort, and formalizes a
sense in which these seemingly naive rules are the best possible. One proposal is top-two
probability sampling, which computes the two designs with the highest posterior probability of
being optimal, and then randomizes to select among these two. One is a variant of top-two
sampling which considers not only the probability a design is optimal, but the expected amount
by which its quality exceeds that of other designs. The final algorithm is a modified version
of Thompson sampling that is tailored for identifying the best design. We prove that these
simple algorithms satisfy a sharp optimality property. In a frequentist setting where the true
quality of the designs is fixed, one hopes the posterior definitively identifies the optimal design,
in the sense that that the posterior probability assigned to the event that some other design
is optimal converges to zero as measurements are collected. We show that under the proposed
algorithms this convergence occurs at an exponential rate, and the corresponding exponent is
the best possible among all allocation rules.

1 Introduction
This paper considers the optimal adaptive allocation of measurement effort in order to identify
the best among a finite set of options or designs. An experimenter sequentially chooses designs to
measure and observes independent noisy signals of their quality. The goal is to allocate measure-
ment effort intelligently so that the best design can be identified confidently after a small number
of measurements. Just as the multi-armed bandit problem crystallizes the tradeoff between explo-
ration and exploitation in sequential decision-making, this “pure–exploration” problem crystallizes
the challenge of efficiently gathering information before committing to a final decision. It serves as
a fundamental abstraction of issues faced in many practical settings. For example:

• Efficient A/B/C Testing: An e-commerce platform is considering a change to its website and
would like to identify the best performing candidate among many potential new designs. To
do this, the platform runs an experiment, displaying different designs to different users who
visit the site. How should the platform decide what percentage of traffic to allocate to each
website design?

• Simulation Optimization: An engineer would like to identify the best performing aircraft
design among several proposals. She has access to a realistic simulator through which she
can assess the quality of the designs, but each simulation trial is very time consuming and
produces only noisy output. How should she allocate simulation effort among the designs?
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• Design of Clinical Trials: A medical research organization would like to find the most effec-
tive treatment out of several promising candidates. They run a clinical trail in which they
experiment with the treatments. The results of the study may influence practice for many
years to come, and so it is worth reaching a definitive conclusion. At the same time, clinical
trails are extremely expensive, and careful experimentation can help to mitigate the associ-
ated costs.1 Multi-armed bandit models of clinical trails date back to Thompson [1933], but
bandit algorithms lack statistical power in detecting the best treatment at the end of the trial
[Villar et al., 2015]. Can we develop adaptive rules with better performance?

We study Bayesian algorithms for adaptively allocating measurement effort. Each begins with
a prior distribution over the unknown quality of the designs. The experimenter learns as mea-
surements are gathered, and beliefs are updated to form a posterior distribution. This posterior
distribution gives a principled mechanism for reasoning about the uncertain quality of designs, and
for assessing the probability any given design is optimal. By formulating this problem as a Markov
decision process whose state-space tracks posterior beliefs about the true quality of each design,
dynamic programming could in principle be used to optimize many natural measures of perfor-
mance. Unfortunately, computing or even storing an optimal policy is usually infeasible due to the
curse of dimensionality. Instead, this work proposes three simple and intuitive rules for adaptively
allocating measurement effort, and by characterizing fundamental limits on the performance of any
algorithm, formalizes a sense in which these seemingly naïve rules are the best possible.

The first algorithm we propose is called top–two probability sampling. It computes at each
time-step the two designs with the highest posterior probability of being optimal. It then randomly
chooses among them, selecting the design that appears most likely to be optimal with some fixed
probability, and selecting the second most likely otherwise. Beliefs are updated as observations
are collected, so the top-two designs change over time. The long run fraction of measurement
effort allocated to each design depends on the true quality of the designs, and the distribution
of observation noise. Top–two value sampling proceeds in a similar manner, but in selecting the
top-two designs it considers not only the probability a design is optimal, but the expected amount
by which its quality exceeds that of other designs. The final algorithm we propose is a top-
two sampling version of the Thompson sampling algorithm for multi-armed bandits. Thompson
sampling has attracted a great deal of recent interest in both academia and industry [Scott, 2016,
Tang et al., 2013, Graepel et al., 2010, Chapelle and Li, 2011, Agrawal and Goyal, 2012, Kauffmann
et al., 2012, Gopalan et al., 2014, Russo and Van Roy, 2014], but it is designed to maximize the
cumulative reward earned while sampling. As a result, in the long run it allocates almost all
effort to measuring the estimated-best design, and requires a huge number of total measurements
to certify that none of the alternative designs offer better performance. We introduce a natural
top-two variant of Thompson sampling that avoids this issue and as a result offers vastly superior
performance for the best-arm identification problem.

Remarkably, these simple heuristic algorithms satisfy a strong optimality property. Our analysis
focuses on frequentist consistency and rate convergence of the posterior distribution, and therefore
takes place in a setting where the true quality of the designs is fixed, but unknown to the ex-
perimenter. One hopes that as measurements are collected the posterior distribution definitively
identifies the true best design, in the sense that the posterior probability assigned to the event that
some other design is optimal converges to zero. We show that under the proposed algorithms this
convergence occurs at an exponential rate, and the corresponding exponent is essentially the best

1Interpreted the context of clinical trials, this paper’s results are stated in terms of the number of patients required
to reach a confided conclusion of the best treatment. However, we will see that optimal rules from this perspective
also allocate fewer patients to very poor treatments, potentially leading to more ethical trials [Berry, 2004].
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possible among all allocation rules.

1.1 Main Contributions

This paper makes both algorithmic and theoretical contributions. On the algorithmic side, we
develop three new adaptive measurement rules. The top-two Thompson sampling rule, in particular,
could have an immediate impact in application areas where Thompson sampling is already in use.
For example, there are various reports of Thompson sampling being used in A/B testing [Scott,
2016] and in clinical trials [Berry, 2004]. But practitioners in these domains typically hope to
commit to a decision after definitive period of experimentation, and top-two Thompson sampling
can greatly reduce the number of measurements required to do so. In addition, because of their
simplicity, the proposed allocation rules can be easily adapted to treat problems beyond the scope
of this paper’s problem formulation. See Section 7 for examples.

The paper also makes several theoretical contributions. Most importantly, it is of broad scientific
interest to understand when very simple measurement strategies are the best possible. This paper
provides a sharp result of this type by proving that three top-two sampling rules attain an optimal
rate of posterior convergence across a broad class of problems. In establishing this result, we exactly
characterize the optimal rate of posterior convergence attainable by an adaptive algorithm, and
provide interpretable bounds on this rate when measurement distributions are sub-Gaussian. The
analysis also provides several intermediate results which may be of independent interest, including
establishing consistency and exponential rates of convergence for posterior distributions with non-
conjugate priors and under adaptive measurement rules.

1.2 Related Literature

Sequential Bayesian Best-Arm Identification. There is a sophisticated literature on algo-
rithms for Bayesian multi-armed bandit problems. In discounted bandit problems with independent
arms, Gittins indices characterize the Bayes optimal policy [Gittins and Jones, 1974, Gittins, 1979].
Moreover, a variety of simpler Bayesian allocation rules have been developed, including Bayesian
upper-confidence bound algorithms [Kaufmann et al., 2012, Srinivas et al., 2012, Kaufmann, 2016],
Thompson sampling [Agrawal and Goyal, 2012, Korda et al., 2013, Gopalan et al., 2014, Johnson
et al., 2015], information-directed sampling [Russo and Van Roy, 2014], the knowledge gradient
[Ryzhov et al., 2012], and optimistic Gittins indices [Gutin and Farias, 2016]. These heuristic algo-
rithms can be applied effectively to complicated learning problems beyond the specialized settings
in which the Gittins index theorem holds, have been shown to have strong performance in simula-
tion, and have theoretical performance guarantees. In several cases, they are known to attain sharp
asymptotic limits on the performance of any adaptive algorithm due to Lai and Robbins [1985].

The pure-exploration problem studied in this paper is not nearly as well understood. Recent
work has cast this problem in a decision-theoretic framework [Chick and Gans, 2009]. However,
because the conditions required for the Gittins index theorem do not hold, computing an optimal
policy via dynamic programming is generally infeasible due to the curse of dimensionality. Papers
in this area typically focus on problems with Gaussian observations and priors. They formulate
simpler problems that can be solved exactly – like a problem where only a single measurement can
be gathered [Gupta and Miescke, 1996, Frazier et al., 2008, Chick et al., 2010] or a continuous-time
problem with only two alternatives [Chick and Frazier, 2012] – and then extend those solutions
heuristically to build measurement and stopping rules in more general settings.

For problems with Gaussian priors and noise distributions, the expected-improvement (EI)
algorithm is a popular Bayesian approach to sequential information-gathering. Interesting recent
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work by Ryzhov [2016] studies the long run distribution of measurement effort allocated by the
expected-improvement and shows this is related to the optimal computing budget allocation of
Chen et al. [2000]. This contribution is very similar in spirit to this paper, as it relates the long-
run behavior of a simple Bayesian measurement strategy to a notion of an approximately optimal
allocation. Unfortunately, EI cannot match the performance guarantees in this paper. In fact,
under EI the posterior converges only at a polynomial rate, instead of the exponential rate attained
by the algorithms proposed here. See appendix C for a more precise discussion.

Classical Ranking and Selection. The problem of identifying the best system has been studied
for many decades under the names ranking and selection or ordinal optimization. See Kim and
Nelson [2006] and Kim and Nelson [2007] for reviews. Part of this literature focuses on a problem
called subset-selection, where the goal is not to identify the best-design, but to find a fairly small
subset of designs that is guaranteed to contain the best design. Beginning with Bechhofer [1954],
many papers have focused on an indifference zone formulation, where, for user-specified ε, δ > 0,
the goal is to guarantee with probability at least 1 − δ the algorithm returns a design within ε of
optimal. Assuming measurement noise is Gaussian with known variance σ2, one can guarantee this
indifference-zone criterion by gathering O

(
(σk/ε2) log(k/δ)

)
total measurements, divided equally

among the k designs, and then returning the design with highest empirical-mean. For the case of
unknown variances, Rinott [1978] proposes a two stage procedure, where the first stage is used to
estimate the variance of each population, and the number of samples collected from each design in
the second stage is scaled by its estimated standard deviation. In the machine learning literature,
Even-Dar et al. [2002] shows that when measurement noise is uniformly bounded, the indifference-
zone criterion is satisfied by a sequential elimination strategy that uses only O

(
(k/ε2) log(1/δ)

)
samples on average. Mannor and Tsitsiklis [2004] provide a matching lower bound. Similar to
minimax bounds, this shows the upper bound of Even-Dar et al. [2002] is tight, up to a constant
factor, for a certain worst case problem instance. Since Paulson [1964], many authors have sought
to reduce the number of samples required on easier problem instances by designing algorithms
that sequentially eliminate arms once they are determined to be suboptimal with high confidence.
See the recent work of Frazier [2014] and the references therein. However, in a sense described
below, Jennison et al. [1982] show formally that there are problems with Gaussian observations
where any sequential-elimination algorithm will require substantially more samples than optimal
adaptive allocation rules. See Section 7 for modified top-two sampling algorithms designed for an
indifference zone criterion.

The asymptotic complexity of best-arm identification. We described attainable rates of
performance on a worst-case problem instance characterized by Even-Dar et al. [2002] and Mannor
and Tsitsiklis [2004]. A great deal of work has sought “problem dependent” bounds, which reveal
that the best-arm can be identified more rapidly when the true problem instance is easier. This is
the case, for example, when some arms are of very low quality, and can be distinguished from the
best using a small number of measurements. Asymptotic measures of the complexity of best-arm
identification appear to have been derived independently in statistics [Chernoff, 1959, Jennison
et al., 1982], simulation optimization [Glynn and Juneja, 2004], and, concurrently with this paper,
in the machine learning literature [Garivier and Kaufmann, 2016]. Each of these papers studies a
slightly different objective, but each captures a notion of the number of samples required to identify
the best-arm as a function of the problem instance – i.e. as a function the number of designs, each
design’s true quality, and the distribution of measurement noise.
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Glynn and Juneja [2004] build on the optimal-computing-budget allocation (OCBA) of Chen
et al. [2000] to provide a rigorous large-deviations derivation of the optimal fixed allocation. In par-
ticular, assuming the design with the highest empirical mean is returned, there is a fixed allocation
under which the probability of incorrect selection decays exponentially, and the exponent is optimal
under all fixed-allocation rules. The setting studied by this paper is often called the “fixed-budget”
setting in the recent multi-armed bandit literature. Unfortunately, it may be difficult to implement
the allocation in Glynn and Juneja [2004] without additional prior knowledge. Later work by Glynn
and Juneja [2015] provides a substantial discussion of this issue.

This paper was highly influenced by a classic paper by Chernoff [1959] on the sequential design
of experiments for binary hypothesis testing. Chernoff’s asymptotic derivations give great insight
best-arm identification, which can be formulated as a multiple-hypothesis testing problem with
sequentially chosen experiments, but surprisingly this connection does not seem to be discussed in
the literature. Chernoff looks at a different scaling than Glynn and Juneja [2004]. Rather than
take the budget of available measurements to infinity, he allows the algorithm to stop and declare
the hypothesis true or false at any time, but takes the cost of gathering measurements to zero while
the cost of an incorrect terminal decision stays fixed. He constructs rules that minimize expected
total costs in this limit. Chernoff makes restrictive technical assumptions, some of which have been
removed in subsequent work [Albert, 1961, Kiefer and Sacks, 1963, Keener, 1984, Nitinawarat et al.,
2013, Naghshvar et al., 2013].

Jennison et al. [1982] study an indifference zone formulation of the problem of identifying the
best-design. Like Chernoff [1959], they allow the algorithm to stop and return an estimate of the
best-arm at any time, but rather than penalize incorrect decisions, they require that the probability
correct selection (PCS) exceeds 1 − δ > 0 for every problem instance. Intuitively, the expected
number of samples required by an algorithm satisfying this PCS constraint must tend to infinity as
δ → 0. In the case of Gaussian measurement noise, Jennison et al. [1982] characterize the optimal
asymptotic scaling of expected number of samples in this limit. The recent multi-armed bandit
literature refers to this formulation as the “fixed-confidence” setting.

A large body of work in the recent machine learning literature has sought to characterize various
notions of the complexity of best-arm identification [Even-Dar et al., 2002, Mannor and Tsitsiklis,
2004, Audibert and Bubeck, 2010, Gabillon et al., 2012, Karnin et al., 2013, Jamieson and Nowak,
2014]. However, upper and lower bounds match only up to constant or logarithmic factors, and
only for particular hard problem instances. Substantial progress was presented by Kaufmann and
Kalyanakrishnan [2013] and Kaufmann et al. [2014], who seek to exactly characterize the asymptotic
complexity of identifying the best arm in both the fixed-budget and fixed-confidence settings. Still,
the upper and lower bounds presented there do not match. A short abstract of the current paper
appeared in the 2016 Conference on Learning Theory. In the same conference, independent work
by Garivier and Kaufmann [2016] provided matching upper and lower bounds on the complexity
of identifying the best arm in the “fixed-confidence” setting. Like the present paper, but unlike
Jennison et al. [1982], these results apply whenever observation distributions are in the exponential
family and do not require an indifference zone.

The current paper looks at a different measure. We study a frequentist setting in which the
true quality of each design is fixed, and characterize the rate of posterior convergence attainable
for each problem instance. We also describe, as a function of the problem instance, the long-run
fraction of measurement effort allocated to each design by any algorithm attaining this rate of
convergence. These asymptotic limits turn out to be closely related to some of the aforementioned
results. In particular, the optimal exponent given in Subsection 6.4 mirrors the complexity measure
of Chernoff [1959]. This exponent is then simplified into a form that mirrors one derived by Glynn
and Juneja [2004], and, for Gaussian distributions, one derived by Jennison et al. [1982]. While the
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complexity measure we derive is similar to past work, the proposed algorithms differ substantially.
The allocation rules proposed by Chernoff [1959], Jennison et al. [1982] and Glynn and Juneja
[2004] are essentially developed as a means of proving certain rates are attainable asymptotically,
and as Chernoff [1975] writes, “sidestep the issue of how to experiment in the early stages.” By
contrast, we show simple and natural adaptive rules automatically reach a notion of asymptotically
optimal performance. See Subsection 6.5 for a more precise discussion of these approaches.

2 Problem Formulation
Consider the problem of efficiently identifying the best among a finite set of designs based on noisy
sequential measurements of their quality. At each time n ∈ N, a decision-maker chooses to measure
the design In ∈ {1, ..., k}, and observes a measurement Yn,In . The measurement Yn,i ∈ R associated
with design i and time n is drawn from a fixed, unknown, probability distribution, and the vector
Yn , (Yn,1, ..., Yn,k) is drawn independently across time. The decision-maker chooses a policy, or
adaptive allocation rule, which is a (possibly randomized) rule for choosing a design In to measure
as a function of past observations I1, Y1,I1 , ...In−1, Yn−1,In−1 . The goal is to efficiently identify the
design with highest mean.

We will restrict attention to problems where measurement distributions are in the canonical one
dimensional exponential family. The marginal distribution of the outcome Yn,i has density p(y|θ∗i )
with respect to a base measure ν, where θ∗i ∈ R is an unknown parameter associated with design
i. This density takes the form

p(y|θ) = b(y) exp{θT (y)−A(θ)} θ ∈ R (1)

where b, T , and A are known functions, and A(θ) is assumed to be twice differentiable. We will
assume that T is a strictly increasing function so that µ(θ) ,

´
yp(y|θ)dν(y) is a strictly increasing

function of θ. Many common distributions can be written in this form, including Bernoulli, normal
(with known variance), Poisson, exponential, chi-squared, and Pareto (with known minimal value).

Throughout the paper, θ∗ , (θ∗1, ..., θ∗k) will denote the unknown true parameter vector, and
θ and θ′ will be used to denote possible alternative parameter vectors. Let I∗ = arg max1≤i≤k θ

∗
i

denote the unknown best design. We will assume throughout that θ∗i 6= θ∗j for i 6= j so that I∗
is unique, although this can be relaxed by considering an indifference zone formulation where the
goal is to identify an ε–optimal design, for some specified tolerance level ε > 0.

Prior and Posterior Distributions. The policies studied in this paper make use of a prior
distribution Π1 over a set of possible parameters Θ that contains θ∗. Based on a sequence of
observations (I1, Y1,I1 , ..., In−1, Yn−1,In−1), beliefs are updated to attain a posterior distribution
Πn. We assume Π1 has density π1 with respect to Lebesgue measure. In this case, the posterior
distribution Πn has corresponding density

πn(θ) = π1(θ)Ln−1(θ)´
Θ π1(θ′)Ln−1(θ′)dθ′ n ≥ 2, (2)

where

Ln−1(θ) =
n−1∏
l=1

p(Yl,Il |θIl)

is the likelihood function. While this formulation enforces some technical restrictions to facilitate
theoretical analysis, it allows for very general prior distributions, and in particular allows for the
quality of different designs to be correlated under the priors.
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Optimal Action Probabilities. Let

Θi ,
{
θ ∈ Θ

∣∣∣∣θi > max
j 6=i

θj

}
denote the set of parameters under which design i is optimal, and let

αn,i , Πn(Θi) =
ˆ

Θi

πn(θ)dθ (3)

denote the posterior probability assigned to the event that action i is optimal. Our analysis will
focus on Πn(Θc

I∗) = 1−αI∗ , which is the posterior probability assigned to the event that an action
other than I∗ is optimal. The next section will introduce policies under which Πn(Θc

I∗) → 0 as
n→∞, and the rate of convergence is essentially optimal.

Further Notation. Before proceeding, we introduce some further notation. Let Fn denote the
sigma algebra generated by (I1, Y1,I1 , ...In, Yn,In). For all i ∈ {1, ..., k} and n ∈ N, define

ψn,i , P(In = i|Fn−1) Ψn,i ,
n∑
`=1

ψ`,i ψn,i , n−1Ψn,i.

Each of these measures the effort allocated to design i up to time n.

3 Algorithms
This section proposes three algorithms for allocating measurement effort. Each depends on a
tuning parameter β > 0, which will sometimes be set to a default value of 1/2. Each algorithm is
based on the same high level principle. At every time step, each algorithm computes an estimate
Î ∈ {1, ..., k} of the optimal design, and measures that with probability β. Otherwise, we consider
a counterfactual: in the (possibly unlikely) event that Î is not the best design, which alternative
Ĵ 6= Î is most likely to be the best design? With probability 1 − β, the algorithm measures the
alternative Ĵ . The algorithms differ in how they compute Î and Ĵ . The most computationally
efficient is the modified version of Thompson sampling, under which Î and and Ĵ are themselves
randomly sampled from a probability distribution.

We will see that asymptotically all three algorithms allocate faction β of measurement effort
to measuring the estimated-best design, and the remaining fraction to gathering evidence about
alternatives. The algorithms adjust how measurement effort is divided among these alternative
designs as evidence is gathered, allocating less effort to measuring clearly inferior designs and
greater effort to measuring designs that are more difficult to distinguish from the best.

3.1 Top-Two Probability Sampling (TTPS)

With probability β, the top-two probability sampling (TTPS) policy plays the action În = arg maxi αn,i
which, under the posterior, is most likely to be optimal. When the algorithm does not play În, it
plays the most likely alternative Ĵn = arg maxj 6=În αn,j , which is the action that is second most likely
to be optimal under the posterior. Put differently, the algorithm sets ψn,În = β, and ψn,Ĵn = 1−β.
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3.2 Top-Two Value Sampling (TTVS)

We now propose a variant of top-two sampling that considers not only the probability a design is
optimal, but the expected amount by which its quality exceeds that of other designs. In particular,
we will define below a measure Vn,i of the value of design i under the posterior distribution at time n.
Top-two value sampling computes the top-two designs under this measure: În = arg maxi Vn,i and
Ĵn = arg maxj 6=În Vn,j . It then plays the top design În with probability β and the best alternative
Ĵn otherwise. As observations are gathered, beliefs are updated and so the top two designs change
over time. The measure of value Vn,i is defined below.

The definition of TTVS depends on a choice of (utility) function u : θ 7→ R, which encodes a
measure of the value of discovering a design with quality θi. Two natural choices of u are u(θ) = θ
and u(θ) = µ(θ). The paper’s theoretical results allow u to be a general function, but we assume
that it is continuous and strictly increasing. For a given choice of u, and any i ∈ {1, ..., k}, the
function

vi(θ) = max
j
u(θj)−max

j 6=i
u(θj) =

{
0 if θ /∈ Θi

u(θi)−maxj 6=i u(θj) if θ ∈ Θi

provides a measure of the value of design i when the true parameter is θ. It captures the improve-
ment in decision quality due to design i’s inclusion in the choice set. Let

Vn,i =
ˆ

Θ

vi(θ)πn(θ)dθ =
ˆ

Θi

vi(θ)πn(θ)dθ (4)

denote the expected value of vi(θ) under the posterior distribution at time n. This can be viewed
as the option-value of design i: it is the expected additional value of having the option to choose
design i when it is revealed to be the best design. Note that the integral (4) defining Vn,i is a
weighted version of the integral defining αn,i. The paper will formalize a sense in which Vn,i and
αn,i are asymptotically equivalent as n → ∞, and as a result the asymptotic analysis of top-two
value sampling essentially reduces to the analysis of top-two probability sampling.

3.3 Thompson Sampling

Thompson sampling is an old and popular heuristic for multi-armed problems. The algorithm
simply samples actions according to the posterior probability they are optimal. In particular, it
selects action i with probability ψn,i = αn,i, where αn,i denotes the probability action i is optimal
under under a parameter drawn from the posterior distribution.

Thompson sampling can have very poor asymptotic performance for the best arm identification
problem. Intuitively, this is because once it estimates that a particular arm is the best with
reasonably high probability, it selects that arm in almost all periods at the expense of refining its
knowledge of other arms. If αn,i = .95, then the algorithm will only select an action other than i
roughly once every 20 periods, greatly extending the time it takes until αn,i > .99. This insight can
be made formal; our results imply that Thompson sampling attains a only attains a polynomial,
rather exponential, rate of posterior convergence. A similar reasoning applies to other multi-armed
bandit algorithms. The work of Bubeck et al. [2009] shows formally that algorithms satisfying
regret bounds of order log(n) are necessarily far from optimal for the problem of identifying the
best arm.

With this in mind, it is natural to consider a modification of Thompson sampling that simply
restricts the algorithm from sampling the same action too frequently. One version of this idea is
proposed below.
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3.4 Top-Two Thompson Sampling (TTTS)

This section proposes top-two Thompson sampling (TTTS), which modifies standard Thompson
sampling by adding a re-sampling step. As with TTPS and TTVS, this algorithm depends on a
tuning parameter β > 0 that will sometimes be set to a default value of 1/2.

As in Thompson sampling, at time n, the algorithm samples a design I ∼ αn. Design I is
measured with probability β, but, in order to prevent the algorithm from exclusively focusing on
one action, with probability 1− β, an alternative design is measured. To generate this alternative,
the algorithm continues sampling designs J ∼ αn until the first time J 6= I. This can be viewed
as a top-two sampling algorithm, where the top-two are chosen by executing Thompson sampling
until two distinct designs are drawn.

Under top-two Thompson sampling, the probability of measuring design i at time n is

ψn,i = αn,i

β + (1− β)
∑
j 6=i

αn,j
1− αn,j

 .
This expression simplifies as the algorithm definitively identifies the best design. As αn,I∗ → 1,
ψn,I∗ → β, and for each i 6= I∗,

ψn,i
1− ψn,I∗

∼ αn,i
1− αn,I∗

.

In this limit, the true best design is sampled with probability β. The probability i is sampled given
I∗ is not is equal to the posterior probability i is optimal given I∗ is not.

3.5 Computing and Sampling According to Optimal Action Probabilities

Here we provide some insight into how to efficiently implement the proposed top-two rules in
important problem classes. We begin with top-two Thompson sampling, which is often the easiest
to implement. Note that given an ability to sample from Πn, it is easy to sample from the posterior
distribution over the optimal design αn. In particular, if θ̂ ∼ Πn is drawn randomly from the
posterior, then arg maxi θ̂i is a random sample from αn. Either through the choice of conjugate
prior distributions, or through the use of Markov chain Monte Carlo, it is possible to efficiently
sample from the posterior for many interesting models. Algorithm 1 shows how to directly sample
an action according to TTTS by sampling from the posterior distribution. It is worth highlighting
that this algorithm does not require computing or approximating the distribution αn.

Algorithm 1 Top-Two Thompson Sampling (β)

1: Sample θ̂ ∼ Πn and set I ← arg maxi θ̂i . Apply Thompson sampling
2: Sample B ∼ Bernoulli(β)
3: if B = 1 then . Occurs with probability β.
4: Play I
5: else
6: repeat
7: Sample θ̂ ∼ Πn and set J ← arg maxj θ̂j . Repeat Thompson sampling
8: until J 6= I
9: Play J

10: end if
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The optimal action probabilities αn,i and values Vn,i are defined by k-dimensional integrals,
which may be difficult to compute in general even if the posterior Πn has a closed form. Algo-
rithm 2 shows how to approximate αn,i and Vn,i using samples θ1 . . .θM , which enables efficient
approximations to TTPS and TTVS whenever posterior samples can be efficiently generated.

Algorithm 2 SampleApprox(K,M, u,θ1, . . . ,θM )
1: Si ← {m|i = arg maxj θmj } ∀i ∈ {1, ..,K}
2: α̂i ← |Si|/m ∀i ∈ {1, ..K}
3: V̂i ←M−1∑

m∈Si

(
u(θmi )−maxj 6=i u(θmj )

)
∀i ∈ {1, ..,K}

4: return α̂, V̂

Thankfully, the computation of αn,i and Vn,i simplifies when the algorithm begins with an
independent prior over the qualities θ1, ...θk of the k designs. To understand this fact, suppose
X1, ..., Xk ∈ R are independently distributed and continuous random variables. Then

P(X1 = max
i
Xi) =

ˆ

x∈R

f1(x)
k∏
j=2

Fj(x)dx (5)

where f1 denotes the PDF of X1 and F2, ..., FK are the CDFs of X2, .., Xk. In particular, P(X1 =
maxiXi) can be computed by solving a 1-dimensional integral. Based on this insight, Appendix B
provides an efficient implementation of TTPS and TTVS for a problem with independent Beta priors
and binary observations. That implementation approximates integrals like (5) using quadrature
with n points, and has the time and space complexity that scale as O(kn).

4 A Numerical Experiment
Some of the paper’s main insights are reflected in a simple numerical experiment. Consider a
problem where observations are binary Yn,i ∈ {0, 1}, and the unknown vector θ∗ = (.1, .2, .3, .4, .5)
defines the true success probability of each design. Each algorithm begins with an independent
uniform prior over the components of θ∗. The experiment compares the performance of top-two
probability sampling (TTPS), top-two value sampling (TTVS)2, and top-two Thompson sampling
(TTTS) with β = 1/2 against Thompson sampling and a uniform allocation rule which allocates
equal measurement effort (ψn,i = 1/5) to each design. The uniform allocation is an especially
natural benchmark, as it is the most commonly used strategy in practice.

Figure 1 displays the average number of measurements required for the posterior to reach a
given confidence level. In particular, the experiment tracks the first time when maxi αn,i ≥ c
for various confidence levels c ∈ (0, 1). Figure 1 displays the average number of measurements
required for each algorithm to reach each fixed confidence level, where the average was taken over
100 trials in Panel (a) and 500 in Panel (b). Even for this simple problem with five designs, the
proposed algorithms can reach the same confidence level using fewer than half the measurements
required by a uniform allocation rule. While all the top-two rules attain the same asymptotic
rate of convergence, we can see that top-two probability sampling is slightly outperformed in this
experiment. Panel (a) compares Thompson sampling to Top-Two Thompson sampling. TS appears
to reach low confidence levels as rapidly as top-two TS, but as suggested in Subsection 3.3, is very
slow to reach high levels of confidence. It requires over than 60% more measurements to reach

2TTVS is executed with the utility function u(θ) = θ
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confidence .95 and over 250% more measurements to reach confidence .99. TS requires an onerous
number of measurements to reach confidence .999, and so we omit this experiment.
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(a) TS vs Top-Two TS.
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(b) Comparison with uniform allocation.

Figure 1: Number of measurements required to reach given confidence level.

Figure 2 provides insight into how the proposed algorithms differ from the uniform allocation. It
displays the distribution of measurements and posterior beliefs at the first time when a confidence
level of .999 is reached. Again, all results are averaged across 500 trials. Panel (a) displays
the average number of measurements collected from each design. It is striking that although
TTTS, TTPS, and TTVS seem quite different, they all settle on essentially the same distribution
of measurement effort. Because β = 1/2, roughly one half of the measurements are collected from
I∗ = 5. Moreover, fewer measurements are collected from designs that are farther from optimal,
and most of the remaining half of measurement effort is allocated to design 4. Notice that using the
same number of noisy samples it is much more difficult certify that θ∗4 < θ∗5 than that θ∗1 < θ∗5, both
because θ∗4 is closer to θ∗5, and because observations from a Bernoulli distribution with parameter
.4 have higher variance than under a Bernoulli distribution with parameter .1.

Panel (b) investigates the posterior probability αn,i assigned to the event that design i is optimal.
To make the insights more transparent, these are plotted on log-scale, where the value log(1/αn,i)
can roughly be interpreted as the magnitude of evidence that alternative i is not optimal. By using
an equal allocation of measurement effort across the designs, the uniform sampling rule gathers
an enormous amount of evidence to rule out design 1, but an order of magnitude less evidence to
rule out design 4. Instead of allocating measurement effort equally across the alternatives, TTTS,
TTPS, and TTVS appear to exactly adjust measurement effort to gather equal evidence that each
of the first four designs is not optimal.

Intuitively, in the long run each of the proposed algorithms will allocate measurement effort
to design 5–the true best design–and to whichever other designs could most plausibly be optimal.
If too much measurement effort has been allocated to a particular design, then the posterior will
indicate that it is clearly suboptimal, and effort will be allocated elsewhere until a similar amount
of evidence has been gathered about other designs. In this way, measurement effort is automatically
adjusted to the appropriate level.
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Figure 2: Distribution of measurements and posterior beliefs at termination.

5 Main Theoretical Results
Our main theoretical results concern the frequentist consistency and rate of convergence of the
posterior distribution. Recall that

Πn(Θc
I∗) =

∑
i 6=I∗

αn,i

captures the posterior mass assigned to the event that an action other than I∗ is optimal. One
hopes that Πn(Θc

I∗) → 0 as the number of observations n tends to infinity, so that the posterior
distribution converges on the truth. We will show that under the TTTS, TTPS, and TTVS allo-
cation rules, Πn(Θc

I∗) converges to zero an exponential rate and that the exponent governing the
rate of convergence is nearly the best possible.

To facilitate theoretical analysis, we will make three additional boundedness assumptions, which
are assumed throughout all formal proofs. This rules out some cases of interest, such the use
of multivariate Gaussian prior. However, we otherwise allow for quite general correlated priors,
expressed in terms of a density over a compact set. Assumption 1 is used only in establishing
posterior concentration results, and it is likely that these can be established under less restrictive
technical conditions.

Assumption 1. The parameter space is a bounded open hyper-rectangle Θ = (θ, θ)k, the prior
density is uniformly bounded with

0 < inf
θ∈Θ

π1(θ) < sup
θ∈Θ

π1(θ) <∞,

and the log-partition function has bounded first derivative with supθ∈[θ,θ] |A
′(θ)| <∞.

The paper’s main results, as stated in the next theorem, characterize the rate of posterior
convergence under the proposed algorithms, formalize a sense in which this is the fastest possi-
ble rate, and bound the impact of the tuning parameter β ∈ (0, 1). The statement depends on
distribution-dependent constants Γ∗β > 0 and Γ∗ > 0 that will be explicitly characterized in Section
6.
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The first part of the theorem shows that there is an exponent Γ∗ > 0 such that Πn(Θc
I∗) cannot

converge to zero at a rate faster than e−nΓ∗ under any allocation rule, and shows that TTPS, TTVS
and TTTS attain this optimal rate of convergence when the tuning parameter β is set optimally.

The remainder of the theorem investigates the role of the tuning parameter β ∈ (0, 1). Part 2
shows that there is an exponent Γ∗β > 0 such that Πn(Θc

I∗)→ 0 at rate e−nΓ∗β under TTPS, TTVS,
or TTTS with parameter β, and this is shown to be optimal among a restricted class of allocation
rules. In particular, we observe that β controls the fraction of measurement effort allocated to the
true best design I∗, in the sense that ψn,I∗ → β as n→∞ under each of the proposed algorithms. A
lower bound establishes that no algorithm that allocates a faction β of overall effort to measuring I∗
can converge at rate faster than e−nΓ∗β . In this sense, while a tuning parameter controls the long-run
measurement effort allocated to the true best design, TTPS, TTVS, and TTTS all automatically
adjust how the remaining the measurement effort is allocated among the k− 1 suboptimal designs
in an asymptotically optimal manner. The final part of the theorem shows that Γ∗β is close to the
largest possible exponent Γ∗ whenever β is close to the optimal value. The choice of β = 1/2 is
particularly robust: Γ∗1/2 is never more than a factor of 2 away from the optimal exponent.

Theorem 1. There exist constants {Γ∗β > 0 : β ∈ (0, 1)} such that Γ∗ = maxβ Γ∗β exists, β∗ =
arg maxβ Γ∗β is unique, and the following properties are satisfied with probability 1:

1. Under TTTS, TTPS, or TTVS with parameter β∗,

lim
n→∞

− 1
n

log Πn(Θc
I∗) = Γ∗.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗.

2. Under TTTS, TTPS, or TTVS with parameter β ∈ (0, 1),

lim
n→∞

− 1
n

log Πn(Θc
I∗) = Γ∗β and lim

n→∞
ψn,I∗ = β.

Under any adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β on any sample path with lim

n→∞
ψn,I∗ = β.

3. Γ∗ ≤ 2Γ∗1
2
and

Γ∗

Γ∗β
≤ max

{
β∗

β
,
1− β∗

1− β

}
.

This theorem is established in a sequence of results in Section 6. The lower bounds in parts 1 and
2 are given respectively in Propositions 5 and 6. Proposition 7 shows the top-two rules attain these
optimal exponents. Part 3 is stated as Lemma 2 in Section 6.
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5.1 An upper bound on the error exponent

Before proceeding, we will state an upper bound on the error exponent when β = 1/2 that is closely
related to complexity terms that have appeared in the literature on best–arm identification (e.g.
Audibert and Bubeck [2010]). This bound depends on the gaps between the means of the different
observation distributions.

We say that a real valued random variable X is σ–sub–Gaussian if E [exp{λ(X −E[X])}] ≤
exp

{
λ2σ2

2

}
so that the moment generating function of X − E[X] is dominated by that of a zero

mean Gaussian random variable with variance σ2. Gaussian random variables are sub-Gaussian, as
are uniformly bounded random variables. The next result applies to both Bernoulli and Gaussian
distributions, as each can be parameterized with sufficient statistic T (y) = y.

Proposition 1. Suppose the exponential family distribution is parameterized with T (y) = y and
that each θ ∈ [θ, θ], if Y ∼ p(y|θ), then Y is sub-Gaussian with parameter σ. Then

Γ∗1
2
≥ 1

16σ2∑
i 6=I∗ ∆−2

i

where for each i ∈ {1, ..., k},
∆i = E[Yn,I∗ ]−E[Yn,i]

is the difference between the mean under θ∗I∗ and the mean under θ∗i .

This shows that Πn(Θc
I∗) decays at asymptotic rate faster than exp{−nmini ∆2

i
16kσ2 }, so convergence

is rapid when there is a large gap between the means of different designs. In fact, Proposition 1
replaces the dependence on (1/k) times the smallest gap ∆i with a dependence on

(∑k
i=2 ∆−2

i

)−1
,

which captures the average inverse gap. This rate is attained only by an intelligent adaptive
algorithm which allocates more measurement effort to designs that are nearly optimal and less to
designs that are clearly suboptimal. In fact, the next result shows that the asymptotic performance
of uniform allocation rule depends only on the smallest gap mini 6=I∗ ∆2

i , and therefore even if some
designs could be quickly ruled out, the algorithm can’t leverage this to attain a faster rate of
convergence.

Proposition 2. If Yn,I∗ ∼ N (0, σ2) and Yn,i ∼ N (−∆i, σ
2) for each i 6= I∗,

lim
n→∞

− 1
n

log Πn(Θc
I∗) = −nmini ∆2

i

4kσ2

under a uniform allocation rule which sets ψn,i = 1/k for each i and n.

6 Analysis

6.1 Asymptotic Notation.

To simplify the presentation, it is helpful to introduce additional asymptotic notation. We say
two sequences an and bn taking values in R are logarithmically equivalent, denoted by an

.= bn, if
1
n log(anbn ) → 0 as n → ∞. This notation means that an and bn are equal up to first order in the
exponent. With this notation, Theorem 1 implies the top-two sampling rules with parameter β
attain the convergence rate Πn(Θc

I∗)
.= e−nΓ∗β . This is an equivalence relation, in the sense that if

an
.= bn and bn

.= cn then an
.= cn. Note that an + bn

.= max{an, bn}, so that the sequence with
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the largest exponent dominates. In addition for any positive constant c, can
.= an, so that constant

multiples of sequences are equal up to first order in the exponent. When applied to sequences of
random variables, these relations are understood to apply almost surely.

It is natural to wonder whether the proposed algorithms asymptotically minimize expressions
like

∑
i 6=I∗(θ∗I∗ − θi)αn,i, which account for how far some designs are from optimal. We note in

passing, that ∑
i 6=I∗

ciαn,i
.= max
i 6=I∗

αn,i

for any positive costs ci > 0, and so any such performance measures are equal to first order in the
exponent. Similar observations have been used to justify the study of the probability of incorrect
selection, rather than notions of the expected cost of an incorrect decision [Glynn and Juneja, 2004,
Audibert and Bubeck, 2010].

6.2 Posterior Consistency

The next proposition provides a consistency and anti-consistency result for the posterior distribu-
tion. The first part says that if design i receives infinite measurement effort, the marginal posterior
distribution of its quality concentrates around the true value θ∗i . The second part says that when re-
stricted to designs that are not measured infinitely often, the posterior does not concentrate around
any value. The posterior converges to the truth as infinite evidence is collected, but nothing can
be ruled out with certainty based on finite evidence.

Proposition 3. With probability 1, for any i ∈ {1, .., k} if Ψn,i →∞, then, for all ε > 0

Πn({θ ∈ Θ|θi /∈ (θ∗i − ε, θ∗i + ε)})→ 0.

If I = {i ∈ {1, ..., k}| limn→∞Ψn,i <∞} is nonempty, then

inf
n∈N

Πn({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) > 0

for any collections of open intervals (θ′i, θ′′i ) ⊂ (θ, θ) ranging over i ∈ I.

This result is the key to establishing that αn,I∗ → 1 under each of the proposed algorithm. The
next subsection gives a more refined result that allows us to to characterize the rate of convergence.

6.3 Posterior Large Deviations

This section provides an asymptotic characterization of posterior probabilities Πn(Θ̃) for any open
set Θ̃ ⊂ Θ and under any adaptive measurement strategy. The characterization depends on the
notion of Kullback-Leibler divergence. For two parameters θ, θ′ ∈ R, the log-likelihood ratio,
log (p(y|θ)/p(y|θ′)), provides a measure of the amount of information y provides in favor of θ over
θ′. The Kullback-Leibler divergence

d(θ||θ′) ,
ˆ

log
(
p(y|θ)
p(y|θ′)

)
p(y|θ)dν(y).

is the expected value of the log-likelihood under observations drawn p(y|θ). Then, if the design to
measure is chosen by sampling from a probability distribution ψ over {1, .., k},

Dψ(θ||θ′) ,
k∑
i=1

ψid(θi||θ′i)
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is the average Kullback-Leibler divergence between θ and θ′ under ψ.
Under the algorithms we consider, the effort allocated to measuring design i, ψn,i , P(In =

i|Fn−1), changes over time as data is collected. Recall that ψn,i , n−1∑n
`=1 ψ`,i captures the

fraction of overall effort allocated to measuring design i over the first n periods. Under an adaptive
allocation rule, ψn is function of the history (I1, Y1,I1 , ...In−1, Yn−1,In−1) and is therefore a random
variable. Given that measurement effort has been allocation according to ψn, Dψn(θ∗||θ) quantifies
the average information acquired that distinguishes θ from the true parameter θ∗. The following
proposition relates the posterior mass assigned to Θ̃ to infθ∈Θ̃Dψn

(θ∗||θ), which captures the
element in Θ̃ that is hardest to distinguish from θ∗ based on samples from ψn.

Proposition 4. For any open set Θ̃ ⊂ Θ,

Πn(Θ̃) .= exp
{
−n inf

θ∈Θ̃
Dψn

(θ∗||θ)
}
.

To understand this result, consider a simpler setting where the algorithm measures design i in
every period, and consider some θ with θi 6= θ∗i . Then the log-ratio of posteriors densities

log
(
πn(θ)
πn(θ∗)

)
= log

(
π1(θ)
π1(θ∗)

)
+
n−1∑
`=1

log
(
p(Y`,i|θi)
p(Y`,i|θ∗i )

)

can be written as the sum of the log-prior-ratio and the log-likelihood-ratio. The log-likelihood
ratio is negative drift random walk: it is the sum of n− 1 i.i.d terms, each of which has mean

E
[
log

(
p(Y1,i|θi)
p(Y1,i|θ∗i )

)]
= E

[
− log

(
p(Y1,i|θ∗i )
p(Y1,i|θi)

)]
= −d(θ∗i ||θi).

Therefore, by the law of large numbers, as n→∞, n−1 log (πn(θ)/πn(θ∗))→ −d(θ∗i ||θi), or equiv-
alently, the ratio of the posterior densities decays exponentially as

πn(θ)
πn(θ∗)

.= exp{−nd(θ∗i ||θi}.

This calculation can be carried further to show that if the designs measured (I1, I2, I3, ...) are drawn
independently of the observations (Y1,Y2,Y3, ...) from a fixed probability distribution ψ, then

πn(θ)
πn(θ∗)

.= exp {−nDψ(θ∗||θ)} . (6)

Now, by a Laplace approximation, one might expect that the integral
´

Θ̃ πn(θ)dθ is extremely well
approximated by integrating around a vanishingly small ball around the point

θ̂ = arg min
θ∈Θ̃

Dψ(θ∗||θ).

These are the main ideas behind Proposition 4, but there are several additional technical challenges
involved in a rigorous proof. First, we need that a property like (6) holds when the allocation rule
is adaptive to the data. Next, convergence of the integral of the posterior density requires a form
of uniform convergence in (6). Finally, since ψn changes over time, the point arg min

θ∈Θ̃
Dψn

(θ∗||θ)

changes over time and basic Laplace approximations don’t directly apply.
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6.4 Characterizing the Optimal Allocation

Throughout this paper, an experimenter wants to gather enough evidence to certify that I∗ is
optimal, but since she does not know θ∗, she does not know which measurements will provide the
most information. To characterize the optimal exponent Γ∗, however, it is useful to consider the
easier problem of gathering the most effective evidence when θ∗ is known. We can cast this as a
game between two players:

• An experimenter, who knows the true parameter θ∗, chooses a (possibly adaptive) measure-
ment rule.

• A referee observes the resulting sequence of observations (I1, Y1,I1 , ..., In−1, Yn−1,In−1) and
computes posterior beliefs (αn,1, .., αn,k) according to Bayes rule (2, 3).

• How can the experimenter gather the most compelling evidence? A rule which is optimal
asymptotically should maximize the rate at which αn,I∗ → 1 as n→∞.

In order to drive the posterior probability αn,I∗ to 1, the decision-maker must be able to rule out all
parameters in Θc

I∗ under which the optimal action is not I∗. Our analysis shows that the posterior
probability assigned to Θc

I∗ is dominated by the parameter that is hardest to distinguish from θ∗

under ψn. In particular, by Proposition 4,

Πn(Θc
I∗)

.= exp
{
−n

(
min
θ∈Θc

I∗
Dψn

(θ∗||θ)
)}

as n→∞. Therefore, the solution to the max-min problem

max
ψ

min
θ∈Θc

I∗
Dψ(θ∗||θ) (7)

represents an asymptotically optimal allocation rule. As highlighted in the literature review, the
max-min problem (7) closely mirrors the main sample complexity term in Chernoff’s classic paper
on the sequential design of experiments (Chernoff [1959]).

Simplifying the optimal exponent. Thankfully, the best-arm identification problem has ad-
ditional structure which allows us to simplify the optimization problem (7). Much of our analysis
involves the posterior probability probability assigned to the event some action i 6= I∗ is optimal.
This can be difficult to evaluate, since the set of parameter vectors under which i is optimal

Θi = {θ ∈ Θ|θi ≥ θ1, ...θi ≥ θk}

involves k separate constraints. Consider instead a simpler problem of comparing the parameter
θ∗i against θ∗I∗ . For each i 6= I∗ define the set

Θi , {θ ∈ Θ|θi ≥ θI∗} ⊃ Θi

under which the value at i exceeds that at I∗. Since, ignoring the boundary of the set, Θc
I∗ =

∪i 6=I∗Θi,
max
i 6=I∗

Πn(Θi) ≤ Πn(Θc
I∗) ≤ kmax

i 6=I∗
Πn(Θi)

and therefore
Πn(Θc

I∗)
.= max
i 6=I∗

Πn(Θi). (8)
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This yields an analogue of (7) that will simplify our subsequent analysis. Combining (8) with
Proposition 4 shows the solution to the max-min problem

Γ∗ , max
ψ

min
i 6=I∗

min
θ∈Θi

Dψ(θ∗||θ) (9)

represents an asymptotically optimal allocation rule. Because the set Θi involves only a constraints
on θi and θI∗ , we can derive an expression the inner minimization problem over θ in terms of the
measurement effort allocated to i and I∗. Define

Ci(β, ψ) , min
x∈R

βd(θ∗I∗ ||x) + ψd(θ∗i∗ ||x). (10)

The next lemma shows that the function Ci arises as the solution to the minimization problem over
θ ∈ Θi in (9). It also shows that the minimum in (10) is attained by a parameter θ under which
the mean observation is a weighted combination of the means under θ∗I∗ and θ∗i . Recall that, for an
exponential family distribution A′(θ) =

´
T (y)p(y|θ)dν(y) is the mean observation of the sufficient

statistic T (y) under θ.

Lemma 1. For any i ∈ {1, .., k} and probability distribution ψ over {1, ..., k}

min
θ∈Θi

Dψ(θ∗||θ) = Ci(ψI∗ , ψi)

In addition, each Ci is a strictly increasing concave function satisfying

Ci(ψI∗ , ψi) = ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ),

where θ ∈ [θ∗i , θ∗I∗ ] is the unique solution to

A′(θ) = ψI∗A
′(θ∗I∗) + ψiA

′(θ∗i )
ψI∗ + ψi

.

Lemma 1 and equation (9) immediately imply

Γ∗ = max
ψ

min
i 6=I∗

Ci(ψI∗ , ψi). (11)

The function Ci(β, ψ) captures the effectiveness with which one can certify θ∗I∗ ≥ θ∗i using an
allocation rule that measures actions I∗ and i with respective frequencies β and ψ. Naturally, it is
an increasing function of the measurement effort (β, ψ) allocated to designs I∗ and i. For given β
and ψ, Ci(β, ψ) ≥ Cj(β, ψ) when θ∗i ≤ θ∗j , reflecting that θ∗i is easier to distinguish from θ∗I∗ than
θ∗j .

Example 1. (Gaussian Observations) Suppose each outcome distribution p(y|θ∗i ) is Gaussian with
unknown mean θ∗i . Then direct calculation using Lemma 1 shows

Ci(β, ψi) =
(

βψi
β + ψi

) (θ∗I∗ − θ∗i )2

2 .

To understand this formula, imagine we use a deterministic allocation rule that collects nβ and nψi
observations from I∗ and i. Let XI∗ and Xi denote the respective sample means. The empirical
difference is normally distributed XI∗ − Xi ∼ N

(
∆, σ2/n

)
where ∆ = θ∗I∗ − θ∗i and σ2 = 1/β +

1/ψi = (β + ψi)/(βψi). Standard Gaussian tail bounds imply that as n → ∞, P(XI∗ −Xi < 0) .=
exp(−n/2(σ∆)2), and so Ci(β, ψi) appears to characterize the probability of error.
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The next proposition formalizes the derivations in this section, and states that the solution to the
above maximization problem attains the optimal error exponent. Recall that ψn,i , P(In = i|Fn−1)
denotes the measurement effort assigned design i at time n.

Proposition 5. Let ψ∗ denote the optimal solution to the maximization problem (11). If ψn = ψ∗

for all n, then
Πn(Θc

I∗)
.= exp{−nΓ∗}.

Moreover under any other adaptive allocation rule,

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗.

This shows that under the fixed allocation rule ψ∗ error decays as e−nΓ∗ , and that no faster
rate of decay is possible, even under an adaptive allocation.

An Optimal Constrained Allocation. Because the algorithms studied in this paper always
allocate β–fraction of their samples to measuring I∗ in the long run, they may not exactly attain
the optimal error exponent. To make rigorous claims about their performance, consider a modified
version of the error exponent (11) given by the constrained max-min problem

Γ∗β , max
ψ:ψI∗=β

min
i 6=I∗

Ci(β, ψi). (12)

This optimization problem yields the optimal allocation subject to a constraint that β–fraction of
the samples are spent on I∗. The next subsection will show that TTTS, TTPS, and TTVS attain
the error exponent Γ∗β. The next proposition formalizes that the solution to this optimization
problem represents an optimal constrained allocation. In addition, it shows that the solution is
the unique feasible allocation under which Ci(β, ψi) is equal for all suboptimal designs i 6= I∗.
To understand this result, consider the case where there are three designs and θ∗1 > θ∗2 > θ∗3. If
ψ2 = ψ3, then C2(β, ψ2) < C3(β, ψ3), reflecting that it is more difficult to certify that θ∗2 ≤ θ∗I∗ than
θ∗3 ≤ θ∗I∗ . The next proposition shows it is optimal to decrease ψ2 and increase ψ1, until the point
when C2(β, ψ2) = C3(β, ψ3). Instead of allocating equal measurement effort to each alternative,
it is optimal to adjust measurement effort to gather equal evidence to rule out each suboptimal
alternative. The results in this proposition are closely related to those in Glynn and Juneja [2004],
in which large deviations rate functions take the place of the functions Ci.

Proposition 6. The solution to the optimization problem (12) is the unique allocation ψ∗ satisfying
ψ∗I∗ = β and

Ci(β, ψi) = Cj(β, ψj) ∀ i, j 6= I∗.

If ψn = ψ∗ for all n, then
Πn(Θc

I∗)
.= exp{−nΓ∗β}.

Moreover under any other adaptive allocation rule, if ψn,I∗ → β then

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β

almost surely.

The following lemma relates the constrained exponent Γ∗β to Γ∗.
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Lemma 2. For β∗ = arg maxβ Γ∗β and any β ∈ (0, 1),

Γ∗

Γ∗β
≤ max

{
β∗

β
,
1− β∗

1− β

}
.

Therefore Γ∗ ≤ 2Γ∗1/2.

6.5 Optimal Adaptive Allocation

Two Stage Procedures. While the last subsection describes an asymptotically optimal explo-
ration strategy, implementing this strategy requires knowledge of the parameter vector θ∗. One
simple approach to attaining the rate (11) is to split the experiment into two phases. For the first
o(n) periods the algorithm selects actions uniformly at random, after which it constructs a point
estimate θ̂ of θ∗. In the second phase, it solves the optimization problem (11) with θ̂ in place of of
θ∗, and follows that allocation for the remaining periods. In the design of sequential experiments,
this idea dates back to Kiefer and Sacks [1963], who builds on the work of Chernoff [1959]. For the
problem of best arm identification, it dates back at least to Jennison et al. [1982].

These two-stage rules can be shown to attain the optimal large deviations rates described in
the previous section. But they also have substantial practical limitations, which were discussed
explicitly in early papers. Jennison et al. [1982] writes their proposed procedures “typically...do
not have good small sample size properties. A better procedure would have several stages and a
more sophisticated sampling rule.” In a 1975 review of the sequential design of experiments, Cher-
noff [1975] notes that asymptotic approaches to the optimal sequential design of experiments had
been fairly successful in circumventing the need to compute Bayesian optimal designs via dynamic
programming, but “the approach is very coarse for moderate sample size problems.” He writes that
two-stage procedures of Kiefer and Sacks [1963], “sidestep the issue of how to experiment in the
early stages,” while constructing the optimal allocations based on point estimates “treats estimates
of θ based on a few observations with as much respect as that based on many observations.”

Convergence of Top-Two Algorithms. Instead of attempting to directly solve the optimiza-
tion problem (11), this paper focuses on simple and intuitive sequential strategies. These algorithms
have the potential to explore much more intelligently in early stages, as they carefully measure and
reason about uncertainty. While they ostensibly have no connection to the derivations earlier in
this section, we establish that remarkably all three automatically converge to the unknown optimal
allocation. This is shown formally in the next result.

We are now ready to establish the paper’s main claim, which shows that TTTS, TTPS, and
TTVS each attain the error exponent Γ∗β.

Proposition 7. Under the TTTS, TTPS, or TTVS algorithm with parameter β > 0, ψn → ψβ,
where ψβ is the unique allocation with ψβI∗ = β satisfying

Ci(β, ψβi ) = Cj(β, ψβj ) ∀i, j 6= I∗.

Therefore,
Πn(Θc

I∗)
.= e−nΓ∗β .

To understand this result, imagine that n is very large, and ψn,I∗ ≈ β. If the algorithm has
allocated too much measurement effort to a suboptimal action i, with ψn,i > ψβi + δ for a constant
δ > 0, then it must have allocated too little measurement effort to at least one other suboptimal
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design j 6= i. Since much less evidence has been gathered about j than i, we expect αj,n >> αj,i.
When this occurs, TTTS, TTPS and TTVS essentially never sample action i until the average effort
ψn,i allocated to design i dips back down toward ψβi . This seems to suggest that the algorithm
cannot allocate too much effort to any alternative, but that in turn implies that it never allocates
too little effort to measuring any alternative.

6.6 Asymptotics of the Value Measure

The proof for top-two value sampling relies on the following lemma, which shows that the posterior-
value of any suboptimal design is logarithmically equivalent to its probability of being optimal.

Lemma 3. For any i 6= I∗, Vn,i
.= αn,i

Note that by this lemma,
Πn(Θc

I∗) =
∑
i 6=I∗

αn,i
.=
∑
i 6=I∗

Vn,i,

and so all of the asymptotic results in this could be reformulated as statements concerning the
value assigned to suboptimal alternatives under the posterior.

The lemma is not so surprising, as Vn,i =
´

Θi vi(θ)πn(θ)dθ differs from αn,i =
´

Θi πn(θ)dθ only
because of the function vi(θ). The πn(θ) term dominates this integral as n→∞, since it tends to
zero at an exponential rate in n whereas vi(θ) is a fixed function of n.

7 Extensions and Open Problems
This paper studies efficient adaptive allocation of measurement effort for identifying the best among
a finite set of options or designs. We propose three simple Bayesian algorithms. Each is a variant
of what we call top-two sampling, which, at each time-step, measures one of the two designs that
appear most promising given current evidence. Surprisingly, these seemingly naive algorithms are
shown to satisfy a strong asymptotic optimality property.

Top two sampling appears to be a general design principle that can be extended to address a
variety of problems beyond to the scope of this paper. To spur research in this area, we briefly
discuss a number of extensions and open questions below.

Top-Two Sampling Via Constrained MAP Estimation. Here we present a version of top-
two sampling that uses MAP estimation. This can simplify computations, as MAP estimates can
be computed without solving for the normalizing constant of the posterior density πn(θ). Consider
the following procedure for selecting a design at time n:

1. Compute θ̂ ∈ arg maxθ∈Θ πn(θ) and set În = arg maxi θ̂i.

2. Compute θ̂′ ∈ arg maxθ∈Θc
În
πn(θ) and set Ĵn = arg maxi θ̂′i.

3. Play (În, Ĵn) with respective probabilities (β, 1− β).

The first step uses MAP estimation to make a prediction În of the best design, while the second
uses constrained MAP estimation to identify the alternative design that is most likely to be optimal
when În is not. Many of the asymptotic calculations in the previous section appear to extend to
this algorithm, but proving this formally is left as an open problem.
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Indifference Zone Criterion. Suppose our goal is to confidently identify an ε–optimal arm, for
a user specified indifference parameter ε > 0. Much of the paper investigates the set of parameters
Θi under which arm i is optimal, and studies the rate at which Πn(ΘI∗)→ 1. Now, let us instead
consider the set of parameters

Θε,i = {θ|θi ≥ max
j
θj − ε}

under which i is ε–optimal. It is easy to develop a variety of modified top-two sampling rules
under which maxi Πn(Θε,i) → 1 rapidly. For example, we can extend TTPS as follows: set În =
arg maxi Πn(Θε,i). Define Ĵn = arg maxj 6=În Πn(θ|θj = maxi θi & θj > θÎn +ε) to be the alternative
design that is most likely to be optimal and offer an ε–improvement over În. A top-two Thompson
sampling approach might instead continue sampling θ ∼ Πn until maxi θi > θÎn + ε and then set
Jn = arg maxi θi.

Top m–arm identification. Suppose now that our goal is to identify the top m < k designs.
Consider choosing a design to measure at time n by the following steps:

1. Sample θ ∼ Πn and compute the top m designs under θ.

2. Continue sampling θ′ ∼ Πn until the top m designs under θ′ differ from those under θ.

3. Identify the set of designs that are in the top m under θ or under θ′, but not under both.
Choose a design to measure by sampling one uniformly at random from this set.

This is the natural extension of top-two Thompson sampling to the top-m arm problem. In fact,
when m = 1, this is exactly TTTS with β = 1/2. I conjecture that like the case where m = 1, this
algorithm attains a rate of posterior convergence within a factor of 2 of optimal for general m. The
optimal exponent for this problem can be calculated by mirroring the steps in Subsection 6.4.

Extremely Correlated Designs. While our results apply in the case of correlated priors, the
proposed algorithms may be wasteful when there are a large number of designs whose qualities are
extremely correlated. As an example, consider an extension of our techniques to a pure-exploration
variant of a linear bandit problem. Here we associate each action i with a feature vector xi ∈ Rd
and seek an action that maximizes xTi θ. The vector θ ∈ Rd is unknown, but we begin with a prior
θ ∼ N(0, I) and see noisy observations of xTi θ whenever action i is selected. To apply top-two
sampling to this problem, we should modify the algorithm’s second step. For example, under top-
two Thompson sampling, we usually begin drawing a design according to î ∼ αn, and then continue
drawing designs ĵ ∼ αn until î 6= ĵ. These are played with respective probabilities (β, 1− β). But
even if î 6= ĵ, their features may be nearly identical. A more natural extension of top-two Thompson
sampling would modify the second step, and continue sampling ĵ ∼ αn, until a sufficiently different
action is drawn – for example until the angle between xĵ and xî exceeds a threshold.

Tuning β. The most glaring gap in this work may be arbitrary choice of tuning parameter β.
Optimal asymptotic rates can be attained by adjusting this parameter over time by solving for an
optimal allocation as in (11). It is an open problem to instead develop simple algorithms that set
β automatically through value of information calculations, or avoid the need for such a parameter
altogether.
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Adaptive Stopping. This paper proposed only an allocation rule, which determines the sequence
of measurements to draw, but this can be coupled with a rule that determines when to stop
sampling. One natural stopping rule in a Bayesian framework is to stop when maxi αn,i > 1 − δ
for some δ > 0. Let τδ be a random variable indicating the stopping time under constraint δ.
Since 1 −maxi αn,i

.= e−nΓ∗β under top-two sampling, our results imply that for each sample path
τδ ∼ Γ∗β log(1/δ) as δ → 0. It is natural to conjecture that E[τδ] ∼ Γ∗β log(1/δ) as well. This
closely mirrors optimal results in Chernoff [1959], Jennison et al. [1982] and Kaufmann [2016].
Does this rule also yield a frequentist probability of incorrect selection that is O(δ) as δ → 0? More
generally, an open problem is to show that when combined with an appropriate stopping rule,
top-two sampling schemes nearly minimize the expected number of samples E[τδ] as in Jennison
et al. [1982] or Kaufmann [2016].
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A Outline
This technical appendix is organized as follows.

1. Section B describes a numerical algorithm that can be used to implement TTPS.

2. Section C provides a more precise discussion of related work by Ryzhov [2016].

3. The theoretical analysis begins in Section D. There we begin by noting some basic facts of
exponential family distributions, as well as some results relating martingales to their quadratic
variation process.

4. Section E establishes results related to the concentration of the posterior distribution, includ-
ing the proofs of Prop. 3, Prop. 4, and Lemma 3.

5. Section F studies and simplifies the optimal exponents Γ∗ and Γ∗β, including the proofs of
Lemma 1, Prop. 6, Lemma 2, Prop. 1, and Prop. 2.

6. We conclude with Section G, which studies the top-two allocation rules and provides a proof
of Prop. 7.
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B An Implementation of TTPS
This section describes an implementation of the top-two probability sampling for a problem with
a Beta prior and binary observations. In this problem, measurements are binary with success
probability given by P(Yn,i = 1) = θ∗i . The algorithm begins with an independent prior, under
which the ith component of θ follows a Beta distribution with parameters (λ1

i , λ
2
i ). When λ2

i =
λ2
i = 1, this specifies a uniform prior over [0, 1]. This prior distribution can be easily updated to

form a posterior distribution according to the update rule given in line 19 of Algorithm 3.
This algorithm uses quadrature to approximate the integral defining αn,i. To understand this

implementation, consider a random vector (X1, .., XK) whose components are independently dis-
tributed with Xi ∼ Beta(λ1

i , λ
2
i ). Then, the probability component i is maximal can be computed

according to

P(Xi = max
j
Xj) =

ˆ

x∈R

P(∩j 6=i{Xj ≤ x})P(Xi = dx)

=
ˆ

x∈R

∏
j 6=i

P(Xj ≤ x)

P(Xi = dx)

=
ˆ

x∈R

 K∏
j=1

P(Xj ≤ x)

 /P(Xi ≤ x)

P(Xi = dx).

Algorithm 3 takes as input a vector of x consisting of M points in (0, 1) and approximates the
above integral using quadrature at these points. The algorithm computes and updates the posterior
PDF and CDF of θi in an M dimensional vectors fi and Fi. It also stores and updates a vector
F =

∏K
i=1 Fi,m, where Fm is the posterior probability all the designs have quality below xm. Using

these quantities, the posterior probability design i is optimal is approximated by a sum in line
8. Lines 11-15 select an action according to TTPS and lines 18-21 update the stored statistics
of the posterior using Bayes rule. The algorithm continues for N time steps, and upon stopping
returns the posterior parameters λ1 and λ2, which summarize all evidence gathered throughout the
measurement process. The algorithm has O(NKM) space and time complexity. It is worth noting
that most operations in this algorithm can be implemented in a “vectorized” fashion in languages
like MATLAB, NumPy, and Julia.
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Algorithm 3 BernoulliTTPS(β,K,M,N,λ1,λ2,x)
1: \\Initialize:
2: fi,m ← Beta.pdf(xm|λ1

i , λ
2
i ) ∀i,m

3: Fi,m ← Beta.cdf(xm|λ1
i , λ

2
i ) ∀i,m

4: Fm ←
∏
i Fi,m ∀m

5:
6: for n = 1 . . . N do
7: \\Compute Optimal Action Probabilities:
8: αi ←

∑
m fi,mFm/Fi,m ∀i

9:
10: \\Act and Observe:
11: J1 ← arg maxi αi
12: J2 ← arg maxi 6=J1 αi
13: Sample B ∼ Bernoulli(β)
14: I ← BJ1 + (1−B)J2.
15: Play I and Observe Yn,I ∈ {0, 1}.
16:
17: \\Update Statistics:
18: (λ1

I , λ
2
I)← (λ1

I , λ
2
I) + (Yn,I , 1− Yn,I)

19: Fm ← (Fm/FI,m)× Beta.cdf(xm|λ1
I , λ

2
I) ∀m

20: FI,m ← Beta.cdf(xm|λ1
I , λ

2
I) ∀m

21: fI,m ← Beta.pdf(xm|λ1
I , λ

2
I) ∀m

22: end for
23: return V ,λ1,λ2

C Discussion of the Expected Improvement Algorithm
Here, we briefly discuss interesting recent results of Ryzhov [2016]. He studies a setting with an
uncorrelated Gaussian prior, and Gaussian observation noise Yn,i ∼ N(θi, σ2

i ). To simplify our
discussion, let us restrict attention to the case of common variance σ1 = ... = σk = σ. Ryzhov
[2016] shows that under the the expected-improvement algorithm, in the limit as n→∞∑

i 6=I∗
Ψn,i = O(logn) (13)

and
Ψn,i(θ∗I − θi)2 ∼ Ψn,j(θ∗I − θj)2 ∀i, j 6= I∗ (14)

Recall that Ψn,i =
∑n
`=1 ψn,i denotes the total measurement effort allocated to design i. The

sampling ratios (14) are the ratios suggested in the optimal computing budget allocation of Chen
et al. [2000]. This work therefore establishes an interesting link between EI and OCBA, which
appear quite different on the surface.

Unfortunately, property (13) is not suggested by the OCBA, and implies that Πn(Θc
I∗) cannot

tend to zero at an exponential rate. To see this precisely, assume without loss of generality that
I∗ = 1. Then (13) implies ψn → ei ≡ (1, 0, 0, ..., 0). It is easy to show that minθ∈Θc1 Dei(θ∗||θ) = 0
and therefore, by Proposition 4,

lim
n→∞

−n−1 log Πn(Θc
1) = 0.
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It is also worth noting that the sampling ratios in (14) are not actually optimal for any finite
number of designs k. Specifying our calculations as in Example 1, one can show that under an
optimal fixed allocation (ψi, ..., ψk),

(θ∗I∗ − θ∗i )2

1/ψI∗ + 1/ψi
=

(θ∗I∗ − θ∗j )2

1/ψI∗ + 1/1/ψj
∀i, j 6= I∗.

These calculations match those in Glynn and Juneja [2004] and Jennison et al. [1982]. As a result,
there is no problem with finite k for which the sampling ratios in (14) are optimal. One can show,
in fact, that any optimal multi-armed bandit algorithm that attains the lower bound of Lai and
Robbins [1985] also satisfies equations (13) and (14). The main innovation in this paper is to show
how to build on such bandit algorithms to attain near-optimal rates for the best-arm identification
problem.

Ryzhov [2016] also studies the knowledge gradient policy, which could offer improved perfor-
mance as (13) no longer holds, but shows that as n→∞

Ψn,i(θ∗I − θi) ∼ Ψn,j(θ∗I − θj) ∀i, j 6= I∗,

which could be very far from the optimal sampling proportions.

D Preliminaries
This section presents some basic results which will be used in the subsequent analysis. First, unless
clearly specified, all statements about random variables are meant to hold with probability 1. So
for sequences of random variables {Xn} and {Yn}, if we say that Xn →∞ whenever Yn →∞, this
means that the set {ω : Yn(ω)→∞, Xn(ω) 9∞} has measure zero.

Facts about the exponential family. The log partition function A(θ) is strictly convex and
differentiable, with

A′(θ) =
ˆ
T (y)p(y|θ)dν(y) (15)

equal to the mean under θ. The Kullback-Leibler divergence is equal to

d(θ||θ′) = (θ − θ′)A′(θ)−A(θ) +A(θ′) (16)

and satisfies

θ′′ > θ′ ≥ θ =⇒ d(θ||θ′′) > d(θ||θ′) (17)
θ′′ < θ′ ≤ θ =⇒ d(θ||θ′′) < d(θ||θ′). (18)

Finally, since [θ, θ] is bounded, and we have assumed supθ∈[θ,θ] |A
′(θ)| <∞,

sup
θ∈[θ,θ]

|A(θ)| <∞ and sup
θ,θ′∈[θ,θ]

d(θ||θ′) <∞. (19)

This effectively guarantees no single observation can provide enough information to completely rule
out a parameter.
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Some martingale convergence results. The next fact relates the behavior of a martingaleMn

to its quadratic variation 〈M〉n.

Fact 1. (Williams [1991], 12.13-12.14) Let {Mn} be a square-integrable martingale adapted to the
filtration {Hn} and let

〈M〉n =
n∑
`=1

E[(M` −M`−1)2 |H`−1]

denote the corresponding quadratic variation process. Then

Mn

〈M〉n
→∞

almost surely if 〈M〉n →∞ and limn→∞Mn exists and is finite almost surely if limn→∞〈M〉n <∞.

The next lemma is crucial to our analysis. To draw the connection with our setting, imagine
an adaptive-randomized rule is used to determine when to draw samples from a population. Here
Yn ∈ R denotes the sample at time n, Xn ∈ {0, 1} indicates whether the sample was measured,
and Zn ∈ [0, 1] determines the probability of measurement conditioned on the past. This lemma
provides a law of large numbers when measurement effort

∑n
`=1 Z` tends to infinity, but shows that

if measurement effort is finite then
∑∞
`=1X`Y` is also finite; in this sense the observations collected

from Yn are inconclusive when measurement effort is finite.

Lemma 4. Let {Yn} be an i.i.d sequence of real-valued random variables with finite variance and let
{Xn} be a sequence of binary random variables. Suppose each sequence is adapted to the filtration
{Hn}, and define Zn = P(Xn = 1|Hn−1). If, conditioned on Hn−1, each Yn is independent of Xn,
then with probability 1,

lim
n→∞

n∑
`=1

Z` =∞ =⇒ lim
n→∞

∑n
`=1X`Y`∑n
`=1 Z`

= E[Y1]

and
lim
n→∞

n∑
`=1

Z` <∞ =⇒ sup
n∈N

∣∣∣∣∣
n∑
`=1

X`Y`

∣∣∣∣∣ <∞.
Proof. Let µ = E[Y1] and σ2 = E[(Y1 − E[Y1])2] denote the mean and variance of each Yn. Define
the martingale

Mn =
n∑
`=1

(X`Y` − Z`µ)

with M0 = 0 and put Sn =
∑n
`=1 Z`. This martingale has quadratic variation

〈M〉n =
n∑
`=1

E[(M` −M`−1)2|H`−1]

=
n∑
`=1

E[(X`(Y` − µ) + (Y` − Z`)µ)2 |H`−1]

=
n∑
`=1

Z`σ
2 +

n∑
`=1

Z`(1− Z`)µ2

≤ (σ2 + µ2)Sn.
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We use the shorthand S∞ = limn→∞ Sn and 〈M〉∞ = limn→∞〈M〉n.
Suppose S∞ <∞ so 〈M〉∞ <∞. By Fact 1, limn→∞Mn exists and is finite almost surely, which

implies supn∈N |Mn| <∞. Since |
∑n
`=1X`Y`| ≤ |Mn|+ |µS∞|, this shows supn∈N |

∑n
`=1X`Y`| <∞

as desired.
Now, suppose S∞ = ∞. If 〈M〉∞ < ∞, then again by Fact 1, limn→∞Mn < ∞ and it is

immediate that S−1
n Mn → 0. However, if 〈M〉∞ =∞ then

Mn

〈M〉n
→ 0,

which implies S−1
n Mn → 0 since Sn ≥ (σ2 + µ2)〈M〉n.

Taking Yn = 1 in the lemma above yields Levy’s extension of the Borel–Cantelli lemmas
(Williams [1991], 12.15). Specialized to our setting, this result relates the long run measurement
effort Ψn,i =

∑n
`=1 ψn,i to the number of times alternative i is actually measured

∑n
`=1 1(In = i).

Corollary 1. For i ∈ {1, ..., k}, set Sn,i =
∑n
`=1 1(In = i). Then, with probability 1,

Ψn,i →∞ ⇐⇒ Sn,i →∞

and
Ψn,i →∞ =⇒ Sn,i

Ψn,i
→ 1.

Proof. Apply Lemma 4 with Yn = 1, Xn = 1(In = 1), and Hn = Fn. Then Zn = ψn,i by
definition.

E Posterior Concentration and anti-Concentration

E.1 Uniform Convergence of the Log-Likelihood

We study the log-likelihood

Λn(θ∗||θ) , log
(
Ln(θ∗)
Ln(θ)

)
=

n∑
`=1

log
(
p(Y`,I` |θ∗I`)
p(Y`,I` |θI`)

)
and the log-likelihood from observations of design i

Λn,i(θ∗i ||θi) ,
n∑
`=1

1(In = i) log
(
p(Yn,i|θ∗i )
p(Yn,i|θi)

)
.

A Doob-decomposition expresses Λn,i(θi) = An(θi) + Mn(θi) as the sum of an Fn−1 predictable
process An(θi) and a MartingaleMn(θi). Moreover, an easy calculation shows An(θi) = Ψn,id(θ∗i ||θi)
and Mn(θi) = Λn,i(θ∗i ||θi) − Ψn,id(θ∗i ||θi). Applying Lemma 4 shows Ψ−1

n,iMn(θi) → 0 if Ψn,i →
∞, which shows the log-likelihood ratio tends to infinity at rate Ψn,id(θ∗i ||θi). The next lemma
strengthens this, and provides a link between these quantities that holds uniformly in θi.

Lemma 5. With probability 1, if Ψn,i →∞ then

sup
θi∈[θ,θ]

Ψ−1
n,i |Λn,i(θ

∗
i ||θi)−Ψn,id(θ∗i ||θi)| → 0,

and if limn→∞Ψn,i <∞ then

sup
θi∈[θ,θ]

sup
n∈N
|Λn,i(θi)|+ |Ψn,id(θ∗i ||θi)| <∞.
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Proof. Define ξn , T (Yn,i) − E[T (Yn,i)] and Xn , 1(In = i). Note that E[ξn|Fn−1] = 0,
E[Xn|Fn−1] = ψn,i, and, conditioned on Fn−1, Xn is independent of ξn. Using the form of the
exponential family density given in equation (1), and the form of the KL-divergence given in equa-
tion (16), the log-likelihood ratio can be written as

log
(
p(Yn,i|θ∗i )
p(Yn,i|θi)

)
= (θ∗i − θi)T (Yn,i)− (A(θ∗i )−A(θi))

= d(θ∗i ||θi) + (θ∗i − θi) (T (Yn,i)−E[T (Yn,i)])
= d(θ∗i ||θi) + (θ∗i − θi)ξn

Therefore,

Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi) =
n∑
`=1

X` log
(
p(Y`,i|θ∗i )
p(Y`,i|θi)

)
−

n∑
`=1

ψ`,id(θ∗i ||θi)

=
n∑
`=1

(X` − ψ`,i)d(θ∗i ||θi) +
n∑
`=1

X`ξ`(θ∗i − θi).

Here |θ∗i − θi| ≤ θ − θ ≡ C2 is bounded uniformly. Similarly, as shown in Appendix D, d(θ∗i ||θi) is
bounded uniformly in θi by

C1 ≡ max
θ′∈[θ,θ]

d(θ∗i ||θ′i) <∞.

This implies,

|Λn,i(θi)−Ψn,id(θ∗i ||θi)| ≤ C1

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)
∣∣∣∣∣+ C2

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ (20)

|Λn,i(θi)| ≤ C1Ψn,i + C1

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)
∣∣∣∣∣+ C2

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ . (21)

Since E[ξ2
n] < ∞, the result then follows by applying Lemma 4 and Corollary 1. In particular,

when Ψn,i →∞,

lim
n→∞

Ψ−1
n,i

n∑
`=1

(X` − ψ`,i) = 0 and lim
n→∞

Ψ−1
n,i

n∑
`=1

X`ξ` = 0

When limn→∞Ψn,i <∞,

sup
n∈N

∣∣∣∣∣
n∑
`=1

(X` − ψ`,i)
∣∣∣∣∣ <∞ and sup

n∈N

∣∣∣∣∣
n∑
`=1

X`ξ`

∣∣∣∣∣ <∞.
It is also immediate that d(θ∗i ||θi)Ψn,i ≤ C1Ψn,i 9∞, which by (21) implies the second part of the
result.

A corollary of the previous lemma relates the log-likelihood ratio Λn(θ∗||θ) to the Kullback-
Leibler divergence Dψn

(θ∗||θ).

Corollary 2. With probability 1,

sup
θ∈Θ

|n−1Λn(θ∗||θ)−Dψn(θ∗||θ)| → 0
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Proof.

∣∣∣n−1Λn(θ∗||θ)−Dψn
(θ∗||θ)

∣∣∣ =
∣∣∣∣∣n−1

k∑
i=1

(Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi))
∣∣∣∣∣

≤
k∑
i=1

n−1|Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi)|.

Lemma 5 implies
sup

θi∈[θ,θ]
n−1|Λn,i(θ∗i ||θi)−Ψn,id(θ∗i ||θi)| → 0,

which completes the proof.

E.2 Posterior Consistency: Proof of Prop. 3

Proposition 3. For any i ∈ {1, .., k} if Ψn,i →∞, then, for all ε > 0

Πn({θ ∈ Θ|θi /∈ (θ∗i − ε, θ∗i + ε)})→ 0,

with probability 1. If I = {i ∈ {1, ..., k}| limn→∞Ψn,i <∞} is nonempty, then

inf
n∈N

Πn({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) > 0

for any collections of open intervals (θ′i, θ′′i ) ⊂ (θ, θ) ranging over i ∈ I.

Because we don’t assume an independent prior across the designs, Π1 is not a product measure
and therefore neither is Πn. This makes it challenging to reason about the marginal posterior of
each design, which is required for Proposition 3. Thankfully, since the prior density is bounded, Πn

behaves like a product measure. Note that the likelihood function can be written as the product
of k terms:

Ln(θ) =
k∏
i=1

Ln,i(θi)

where
Ln,i(θi) ,

∏
`≤n
I`=i

p(Y`,1|θi)

with the convention that Ln,i(θi) = 1 when
∑n
`=1 1(I` = i) = 0. Therefore Ln(θ) forms the density

of a product measure. By normalizing, this induces a probability measure over Θ,

Ln(Θ̃) ,
´

Θ̃ Ln(θ)dθ´
Θ Ln(θ)dθ Θ̃ ⊂ Θ,

which, as we argue in the next lemma, behaves like the posterior Πn.

Lemma 6. For any set Θ̃ ⊂ Θ,

C−1Ln(Θ̃) ≤ Πn+1(Θ̃) ≤ CLn(Θ̃),

where
C = supθ∈Θ π1(θ)

infθ∈Θ π1(θ) <∞

is independent of n and Θ̃.
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Proof. This follows immediately by bounding π1(θ) from above and below in the relation

Πn+1(Θ̃) =
´

Θ̃ π1(θ)Ln(θ)dθ´
Θ π1(θ)Ln(θ)dθ .

We can now prove Proposition 3.

Proof of Proposition 3. We begin with the first part of the result. For simplicity of notation, we
focus on the upper interval Θ̃ = {θ ∈ Θ : θi > θ∗i + ε}, but results follow identically for the lower
interval. We want to show Πn(Θ̃) → 0, which occurs if and only if Ln(Θ̃) → 0. Since Ln is a
product measure,

Ln(Θ̃) =

´ θ
θ∗i +ε Ln,i(θ)dθ´ θ
θ Ln,i(θ)dθ

=

´ θ
θ∗i +ε (Ln,i(θ)/Ln,i(θ∗i )) dθ´ θ
θ (Ln,i(θ)/Ln,i(θ∗i )) dθ

=

´ θ
θ∗i +ε exp{−Λn,i(θ∗i ||θ)}dθ´ θ
θ exp{−Λn,i(θ∗i ||θ)}dθ

(22)

where Λn,i(θ∗i ||θi) = log(Ln,i(θ∗i )/Ln,i(θi). By Lemma 5, with probability 1 there is a sequence
an → 0 such that |Λn,i(θ∗i ||θ)−Ψn,id(θ∗i ||θ)| ≤ an for all θ. Then, for bn = ean/e−an → 1, one has

Ln(Θ̃) ≤
bn
´ θ
θ∗i +ε exp{−Ψn,id(θ∗i ||θ)}dθ´ θ
θ exp{−Ψn,id(θ∗i ||θ)}dθ

≤
bn
´ θ
θ∗i +ε exp{−Ψn,id(θ∗i ||θ)}dθ´ θ∗i +ε/2

θ∗i
exp{−Ψn,id(θ∗i ||θ)}dθ

.

The integral in the numerator is upper bounded by (θ − θ∗i − ε) exp{−Ψn,id(θ∗i ||θ∗i + ε) while the
integral in the denominator is lower bounded by (ε/2) exp{−Ψn,id(θ∗i ||θ∗i + ε/2)}. This shows

Ln(Θ̃) ≤ c0bn exp{−Ψn,i (d(θ∗i ||θ∗i + ε)− d(θ∗i ||θ∗i + ε/2))} → 0

where c0 = 2ε−1(θ − θ∗i − ε).
The second part of the claim follows from the lower bound in Lemma 6 of

Πn+1({θ ∈ Θ|θi ∈ (θ′, θ′′) ∀i ∈ I}) ≥ C−1Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i ) ∀i ∈ I}) (23)
= C−1 ∏

i∈I
Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}). (24)

As in (22),

Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}) =
´ θ′′
θ′ exp{−Λn,i(θ∗i ||θ)}dθ´ θ
θ exp{−Λn,i(θ∗i ||θ)}dθ

.

When limn→∞Ψn,i <∞, Lemma 5 shows that for each i ∈ I,

sup
θi∈[θ,θ]

sup
n∈N
|Λn,i(θ∗i ||θi)| <∞.

This implies
inf
n
Ln({θ ∈ Θ|θi ∈ (θ′i, θ′′i )}) > 0

and establishes the claim.
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E.3 Large Deviations: Proof of Proposition 4

All statements in this section hold when observations are drawn under the parameter θ∗. Since θ∗
is fixed throughout, we simplify notation and write

Wn(θ) , Dψn
(θ∗||θ).

Note thatWn(θ∗) = 0. As shown in the next lemma n−1 log (πn(θ)/πn(θ∗))−Wn(θ)→ 0 uniformly
in θ.

Lemma 7. With probability 1,

sup
θ∈Θ

n−1
∣∣∣∣log

(
πn(θ∗)
πn(θ)

)
−Wn(θ)

∣∣∣∣→ 0.

Proof. We have

log
(
πn(θ∗)
πn(θ)

)
−Wn(θ) = log

(
π1(θ∗)
π1(θ)

)
+ (Λn−1(θ∗||θ)−Wn−1(θ)) + (Wn−1(θ)−Wn(θ)) .

Since infθ∈Θ π1(θ) > 0 and supθ∈Θ π1(θ) < ∞, n−1 log (π1(θ)/π1(θ∗)) → 0 uniformly in θ.
By Corollary 2, n−1 (Λn−1(θ)−Wn−1(θ)) → 0 uniformly as well. Finally, by equation (19),
n−1(Wn(θ)−Wn−1(θ)) ≤ n−1 maxi d(θ∗i ||θi)→ 0 uniformly in θ.

The remaining proof of Proposition 4 follows from a sequence of lemmas. The next observes a
form of uniform continuity of Wn that follows from the uniform bound on A′(θ) in Assumption 1.

Lemma 8. For all ε > 0, there exists δ > 0 such that for θ,θ′ ∈ Θ

‖θ − θ′‖∞ ≤ δ =⇒ sup
n∈N
|Wn(θ)−Wn(θ′)| ≤ ε.

Proof. We have that

|Wn(θ)−Wn(θ′)| ≤ max
1≤i≤k

|d(θ∗i ||θi)− d(θ∗i ||θ′i)|

= max
1≤i≤k

∣∣(θ′i − θi)A′(θ∗i ) +A(θi)−A(θ′i)
∣∣

≤ 2Cδ

where C = supθ∈(θ,θ) |A
′(θ)| <∞.

Lemma 9. For any open set Θ̃ ⊂ Θ,
ˆ

θ∈Θ̃

πn(θ)
πn(θ∗)dθ

.=
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ.

Proof. By Corollary 2, we can fix a sequence εn ≥ 0 with εn → 0 such that,

exp{−n(Wn(θ) + εn)} ≤ πn(θ)
πn(θ∗) ≤ exp{−n(Wn(θ)− εn)}.

Integrating over Θ̃ yields,

exp{−nεn}
ˆ

Θ̃

exp{−nWn(θ)}dθ ≤
ˆ

Θ̃

πn(θ)
πn(θ∗)dθ ≤ exp{nεn}

ˆ

Θ̃

exp{−nWn(θ)}dθ.
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Taking the logarithm of each side implies

1
n

∣∣∣∣∣∣∣log
ˆ

Θ̃

πn(θ)
πn(θ∗)dθ − log

ˆ

Θ̃

exp{−nWn(θ)}dθ

∣∣∣∣∣∣∣ ≤ εn → 0.

Lemma 10. For any open set Θ̃ ⊂ Θ,
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ .= exp{−n inf
θ∈Θ̃

Wn(θ)}

Proof. Let θ̂n be a point in the closure of Θ̃, satisfying

Wn(θ̂n) = inf
θ∈Θ̃

Wn(θ).

Such a point always exists, since Wn is continuous, and the closure of Θ̃ is compact. Let

γn ,
ˆ

θ∈Θ̃

exp{−nWn(θ)}dθ.

Our goal is to show
1
n

log(γn) +Wn(θ̂n)→ 0.

We have
γn ≤ Vol(Θ̃) exp{−nWn(θ̂n)}

where for any Θ′ ⊂ Θ, Vol(Θ′) =
´

Θ̃ dθ ∈ (0,∞) denotes the volume of Θ. This shows

lim sup
n→∞

( 1
n

log(γn) +Wn(θ̂n)
)
≤ 0.

We now show the reverse. Fix an arbitrary ε > 0. By Lemma 8, there exists δ > 0 such that

|Wn(θ)−Wn(θ̂n)| ≤ ε ∀n ∈ N

for any θ ∈ Θ with
‖θ − θ̂n‖∞ ≤ δ.

Now, choose a finite δ–cover O of Θ̃ in the norm ‖·‖∞. Remove any set in O that does not intersect
Θ̃. Then, for each o ∈ O,

Vol(o ∩ Θ̃) > 0 =⇒ Cδ , min
o∈O

Vol(o ∩ Θ̃) > 0.

Choose on ∈ O with θ̂n ∈ closure(on). Then, for every θ ∈ on, Wn(θ) ≤Wn(θ̂n) + ε. This shows

γn ≥
ˆ
o

exp{−nWn(θ}dθ ≥ Cδ exp{−n(Wn(θ̂n)− ε)).

36



Taking the logarithm of both sides implies

1
n

log(γn) +Wn(θ̂n) ≥ Cδ
n
− ε→ −ε.

Since ε was chosen arbitrarily, this shows

lim inf
n→∞

( 1
n

log(γn) +Wn(θ̂n)
)
≥ 0,

and completes the proof.

We now complete the proof of Proposition 4.

Proof of Proposition 4. We begin with a simple observation. For any sequences of real numbers
{an}, {bn}, and {ãn}, {b̃n}, if an

.= ãn and bn
.= b̃n ∈ R, then an/bn

.= ãn/b̃n.
Therefore, we have

Πn(Θ̃) = Πn(Θ̃)
Πn(Θ) =

´
Θ̃ πn(θ)dθ´
Θ πn(θ)dθ =

´
Θ̃ (πn(θ)/πn(θ∗))dθ´
Θ (πn(θ)/πn(θ∗))dθ

.=
exp{−n infθ∈Θ̃Wn(θ)}
exp{−n infθ∈ΘWn(θ)}

where the final equality follows from the previous two lemmas. Since Wn(θ) ≥ 0 and Wn(θ∗) = 0,
exp{−n infθ∈ΘWn(θ)} = 1.

E.4 Large Deviations of the Value Measure: Proof of Lemma 3

Lemma 3. For any i 6= I∗, Vn,i
.= αn,i.

Proof. First, since

Vn,i =
ˆ

Θi

vi(θ)πn(θ)dθ ≤ (u(θ)− u(θ))
ˆ

Θi

πn(θ)dθ = (u(θ)− u(θ))αn,i

it is immediate that
lim sup
n→∞

n−1(log Vn,i − logαn,i) ≤ 0. (25)

The other direction more subtle. Define Θi,δ ⊂ Θi by

Θi,δ = {θ ∈ Θ : θi ≥ max
j 6=i

θj + δ}.

For any θ ∈ Θi,δ, vi(θ) ≥ Cδ where

Cδ ≡ min
θ∈[θ,θ]

u(θ + δ)− u(θ) > 0.

Because u(θ + δ) − u(θ) is continuous and is strictly positive for each θ, this minimum exists and
the objective value is strictly positive. Then

Vn,i ≥
ˆ

Θi,δ

vi(θ)πn(θ)dθ ≥ Cδ
ˆ

Θi,δ

πn(θ)dθ = CδΠn(Θi,δ) ∀δ > 0.
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Combining this with Proposition 4 shows

lim inf
n→∞

1
n

(log Vn,i−logαn,i) ≥ lim inf
n→∞

1
n

(log Πn(Θi,δ)−log Πn(Θi)) = − min
θ∈Θi,δ

Dψn
(θ∗||θ)−min

θ∈Θi
Dψn

(θ∗||θ).

The final term can be made arbitrarily small by taking δ → 0. Precisely, by Lemma 8, for any
ε > 0, there exists δ > 0 such that for all n ∈ N and θ,θ′ ∈ Θ satisfying ‖θ − θ′‖∞ ≤ δ ,

Dψn
(θ∗||θ) ≤ ε.

Therefore, for each ε > 0 one can choose δ > 0 such that

min
θ∈Θi,δ

Dψn
(θ∗||θ) ≤ min

θ∈Θi
Dψn

(θ∗||θ) + ε.

This shows lim inf n−1(log Vn,i − logαn,i) ≥ −ε for all ε > 0, and hence

lim inf
n→∞

n−1(log Vn,i − logαn,i) ≥ 0.

F Simplifying and Bounding the Error Exponent

F.1 Proof of Lemma 1

To begin, we restate the results of Lemma 1 in the order in which they will be proved. Recall, from
Section D that A(θ) is increasing and strictly convex, and, by (15), A′(θ) is the mean observation
under θ.

Lemma 1. Define for each i 6= I∗,ψ ≥ 0,

Ci(β, ψ) , min
x∈R

βd(θ∗I∗ ||x) + ψd(θ∗i ||x). (26)

(a) For any i 6= I∗ and probability distribution ψ over {1, ..., k}

min
θ∈Θi

Dψ(θ∗||θ) = Ci(ψI∗ , ψi).

where Θi , {θ ∈ Θ|θi ≥ θI∗}.
(b) Each Ci is a concave function.
(c) The unique solution to the minimization problem (26) is θ ∈ R satisfying

A′(θ) = ψI∗A
′(θ∗I∗) + ψiA

′(θ∗i )
ψI∗ + ψi

.

Therefore,
Ci(ψI∗ , ψi) = ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ).

(d) Each Ci is a strictly increasing function.
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Proof. (a)

min
θ∈Θi

Dψ(θ∗||θ) = min
θ∈Θ:θi≥θI∗

k∑
j=1

ψn,jd(θ∗j ||θj)

= min
θ≥θi≥θI∗≥θ

ψI∗d(θ∗I∗ ||θI∗) + ψid(θ∗i ||θi) +
∑

j /∈{i,I∗}
min
θj

ψn,jd(θ∗j ||θj)

= min
θ≥θi≥θI∗≥θ

ψI∗d(θ∗I∗ ||θI∗) + ψid(θ∗i ||θi)

where the last equality uses that the minimum occurs when θj = θ∗j for j /∈ {I∗, i}, and this is
feasible for any choice of (θi, θI∗). Then, by the monotonicity properties of KL-divergence (see
Section D, equation (17)), there is always a minimum with θi = θI∗ . Therefore this objective value
is equal to

min
θ∈[θ,θ]

ψI∗d(θ∗I∗ ||θ) + ψid(θ∗i ||θ) = min
x∈R

ψI∗d(θ∗I∗ ||x) + ψid(θ∗i ||x) = Ci(ψI∗ , ψi).

(b) Ci is the minimum over a family of linear functions and therefore is concave (See Chap-
ter 3.2 of Boyd and Vandenberghe [2004]). In particular Ci(β, ψ) = minx∈R g((β, ψ);x) where
g((β, ψ);x) = βd(θ∗I∗ ||x) + ψd(θ∗i ||x) is linear in (β, ψ).

(c) Direct calculation using the formula for KL divergence in exponential families (see (16) in
Section D) shows

βd(θ∗I∗ ||x) + ψid(θ∗i ||x) = (β + ψi)A(x)− (βA′(θ∗I∗) + ψiA
′(θ∗i ))x+ f(β, θ∗I∗ , ψi, θ∗i )

where f(β, θ∗I∗ , ψi, θ∗i ) captures terms that are independent of x. Setting the derivative with respect
to x to zero yields the result since A(x) is strictly convex.

(d) We will show Ci is strictly increasing in the second argument. The proof that it is strictly
increasing in its first argument follows by symmetry. Set

f(ψi, x) = βd(θ∗I∗ ||x) + ψid(θ∗i ||x)

so that Ci(β, γi) = minx∈R f(ψi, x). Since KL divergences are non-negative, f(ψi, x) is weakly
increasing in ψi. To establish the claim, fix two nonnegative numbers ψ′ < ψ′′. Let x′ =
arg minx f(ψ′, x) and x′′ = arg minx f(ψ′′, x). By part (c), these are unique and x′ < x′′. Then

f(ψ′, x′) < f(ψ′, x′′) ≤ f(ψ′′, x′′)

where the first inequality uses that x′ 6= x′′ and x′ is a unique minimum and the second uses the f
is non-decreasing.

F.2 Proof of Proposition 6

We will begin by restating Proposition 6.

Proposition 6. The solution to the optimization problem (12) is the unique allocation ψ∗ satisfying
ψ∗I∗ = β and

Ci(β, ψi) = Cj(β, ψj) ∀ i, j 6= I∗. (27)
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If ψn = ψ∗ for all n, then
Πn(Θc

I∗)
.= exp{−nΓ∗β}.

Moreover under any other adaptive allocation rule, if ψn,I∗ → β as n→∞ then

lim sup
n→∞

− 1
n

log Πn(Θc
I∗) ≤ Γ∗β

almost surely.

Proof. By Lemma 1, each function Ci is continuous, and therefore mini 6=I∗ Ci(β, ψi) is continuous
in (ψi : i 6= I∗). Since continuous functions on a compact space attain their minimum, there exists
an optimal solution ψ∗ to (12), which satisfies

min
i 6=I∗

Ci(β, ψ∗i ) = max
ψ:ψI∗=β

min
i 6=I∗

Ci(β, ψi).

Suppose ψ∗ does not satisfy (27), so for some j 6= I∗,

Cj(β, ψ∗j ) > min
i 6=I∗

Ci(β, ψ∗i ).

This yields a contradiction. Consider a new vector ψε with ψεj = ψ∗j − ε and ψεi = ψ∗i + ε/(k − 2)
for each i /∈ {I∗, j}. For sufficiently small ε, one has

Cj(β, ψεj) > min
i 6=I∗

Ci(β, ψεi ) > min
i 6=I∗

Ci(β, ψ∗i )

and so ψε attains a higher objective value. To show the solution to (27) must be unique, imagine
ψ and ψ′ both satisfy (27) and ψI∗ = ψ′I∗ = β. If ψj > ψ′j for some j, then Cj(β, ψj) > Cj(β, ψ′j)
since Cj is strictly increasing. But by (27) this implies that Cj(β, ψj) > Cj(β, ψ′j) for every j 6= I∗,
which implies ψj > ψ′j for every j, and contradicts that that

∑
j 6=I∗ ψj =

∑
j 6=I∗ ψ

′
j = 1− β.

The remaining claims follow immediately from Propoosition 4 and Lemma 1, which together
show that under any adaptive allocation rule

Πn(Θc
I∗)

.= exp{−nmin
i 6=I∗

Ci(ψn,I∗ , ψn,i)}.

This implies that if ψn = ψ∗ for all n, then Πn(Θc
I∗)

.= exp{−nΓ∗β}. Similarly, by the continuity of
each Ci, if ψn,I∗ → β, then

Πn(Θc
I∗)

.= exp{−nmin
i 6=I∗

Ci(β, ψn,i)} ≥ exp{−nΓ∗β}

which establishes the final claim.

F.3 Proof of Lemma 2

Recall, the notation

Γ∗ = max
ψ

min
i 6=I∗

Ci(ψI∗ , ψi) Γ∗β , max
ψ:ψI∗=β

min
i 6=I∗

Ci(β, ψi)

where
Ci(β, ψ) = min

x∈R
βd(θ∗I∗ ||x) + ψd(θ∗i∗ ||x).
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Lemma 2. For β∗ = arg maxβ Γ∗β and any β ∈ (0, 1),

Γ∗

Γ∗β
≤ max

{
β∗

β
,
1− β∗

1− β

}
.

Therefore Γ∗ ≤ 2Γ∗1/2
Proof. Define for each non-negative vector ψ,

f(ψ) = min
i 6=I∗

Ci(ψI∗ , ψi)

The optimal exponent Γ∗ is the maximum of f(ψ) over probability vectors ψ. Here, we instead
define f for all non-negative vectors, and proceed by varying the total budget of measurement effort
available

∑k
i=1 ψi.

Because each Ci is non-decreasing (see Lemma 1), f is non-decreasing. Since the minimum over
x in the definition of Ci only depends on the relative size of the components of ψ, f is homogenous
of degree 1. That is f(cψ) = cf(ψ) for all c ≥ 1. For each c1, c2 > 0 define

g(c1, c2) = max{f(ψ) : ψI∗ = c1,
∑
i 6=I∗

ψi ≤ c2,ψ ≥ 0}.

The function g inherits key properties of f ; it is also non-decreasing and homogenous of degree 1.
We have

Γ∗β = max{f(ψ) : ψI∗ = β,
k∑
i=1

ψi = 1,ψ ≥ 0}

= max{f(ψ) : ψI∗ = β,
∑
i 6=I∗

ψi ≤ 1− β,ψ ≥ 0}

= g(β, 1− β)

where the second equality uses that f is non-decreasing. Similarly, Γ∗ = g(β∗, 1− β∗). Setting

r := max
{
β∗

β
,
1− β∗

1− β

}
implies rβ ≥ β∗ and r(1− β) ≥ 1− β∗. Therefore

rΓ∗β = rg(β, 1− β) = g(rβ, r(1− β)) ≥ g(β∗, 1− β∗) = Γ∗.

F.4 Sub-Gaussian Bound: Proof of Proposition 1

The proof of Proposition 1 relies on the following variational form of Kullback–Leibler divergence,
which is given in Theorem 5.2.1 of Robert Gray’s textbook Entropy and Information Theory Gray
[2011].

Fact 2. Fix two probability measures P and Q defined on a common measureable space (Ω,F).
Suppose that P is absolutely continuous with respect to Q. Then

D (P||Q) = sup
X

{
EP[X]− log EQ[eX ]

}
,

where the supremum is taken over all random variables X such that the expectation of X under P
is well defined, and eX is integrable under Q.
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When comparing two normal distributions N (θ, σ2) and N (θ′, σ2) with common variance, the
KL-divergence can be expressed as d(θ||θ′) = (θ − θ′)2/(2σ2). We follow Russo and Zou [2015]
in deriving the following corollary of Fact 2, which provides and analogous lower bound on the
KL-divergences when distributions are sub-Gaussian. Recall that, µ(θ) =

´
yp(y|θ)dν(y) denotes

the mean observation under θ.

Corollary 3. Fix any θ, θ′ ∈ [θ, θ]. If when Y ∼ p(y|θ′), Y is sub-Gaussian with parameter σ,
then,

d(θ||θ′) ≥ (µ(θ)− µ(θ′))2

2σ2

Proof. Consider two alternate probability distributions for a random variable Y , one where Y ∼
p(y|θ) and one where Y ∼ p(y|θ′) We apply Fact 2 where X = λ(Y −Eθ′ [Y ]), P is the probability
measure when Y ∼ p(y|θ) and Q is the measure when Y ∼ p(y|θ′). By the sub-Gaussian assumption
log Eθ′ [exp{X}] ≤ λ2σ2/2. Therefore, Fact 2 implies

d(θ||θ′) ≥ λ(Eθ[X])− λ2σ2

2 = λ(Eθ[Y ]−Eθ′ [Y ])− λ2σ2

2 .

The result follows by choosing λ = (Eθ[Y ]−Eθ′ [Y ])/σ2 which minimizes the right hand side.

We are now ready to prove Proposition 1. Recall that in an exponential family, A′(θ) =´
T (y)p(y|θ)dν(y), so if T (y) = y then A′(θ) = µ(θ).

Proof of Proposition 1. By Lemma 1,

Γ∗1/2 = max
ψ:ψI∗=1/2

min
i 6=I∗

Ci(1/2, ψi)

Let µI∗ = A′(θ∗I∗) and µi = A′(θ∗i ) denote the means of designs I∗ and i so ∆i = µI∗ − µi. By
Lemma 1,

Ci(1/2, ψi) = (1/2)d(θ∗I∗ ||θ) + ψid(θ∗i ||θ).
where θ is the unique parameter with mean

A′(θ) = (1/2)µI∗ + ψiµi
1/2 + ψi

.

For ψi ≤ 1/2,
A′(θ) ≥ µI∗ + µi

2 = µi + ∆i/2.

Now, using Corollary 3 and the non-negativity of KL-divergence

Ci(1/2, ψi) ≥ ψid(θ∗i ||θ) ≥
ψi(µi − µi + ∆i/2)2

2σ2 = ψi∆2
i

8σ2 .

Choosing ψI∗ = 1/2, and ψi ∝ ∆−2
i , so

ψi = 1
2

 k∑
j−2

∆−2
j

−1

∆−2
i

yields
min
i 6=I∗

Ci(1/2, ψi) ≥
1

16σ2∑k
2 ∆−2

j

.

42



F.5 Convergence of Uniform Allocation: Proof of Proposition 2

Proof. Without loss of generality, assume the problem is parameterized so that the mean of design
i is θ∗i By Proposition 5, we have

Πn(Θc
I∗)

.= exp{−nmin
i 6=I∗

Ci(k−1, k−1)}

By Lemma 1,
Ci(k−1, k−1) = k−1d(θ∗I∗ ||θ) + k−1d(θ∗i ||θ)

where θ = (θ∗I∗ + θ∗i )/2. Therefore, using the formula for the KL-divergence of standard Gaussian
random variables

Ci(k−1, k−1) = (θ∗I∗ − θ)2

2σ2 + (θ∗i − θ)2

2σ2 = (θ∗I∗ − θ∗i )2

4σ2 = ∆2
i

4σ2 .

G Analysis of the Top-Two Allocation Rules: Proof of Proposition
7

Proposition 7. Under the TTTS, TTPS, or TTVS algorithm with parameter β > 0, ψn → ψβ,
where ψβ is the unique allocation with ψβI∗ = β satisfying

Ci(β, ψβi ) = Cj(β, ψβj ) ∀i, j 6= I∗. (28)

Therefore,
Πn(Θc

I∗)
.= e−nΓ∗β . (29)

Because each Ci is continuous, if ψn → ψβ then Ci(ψn,I∗ , ψn,i) → Ci(β, ψβi ) for all i 6= I∗.
Equation (29) then follows by invoking Proposition 6, which establishes the optimality of the
allocation ψβ.

The remainder of this section establishes that ψn → ψβ almost surely the proposed top-two
rules. The proof is broken into a number of steps. In order to provide a nearly unified treatment
of the three algorithms, we begin with several results that hold for any allocation rule.

G.1 Results for a general allocation rule

As in other sections, all arguments here hold for any sample path (up to a set of measure zero). The
first result provides a sufficient condition under which ψn → ψβ. Roughly speaking, if ψn,j ≥ ψ

β
j +δ,

then too much measurement effort has been allocated to design j relative to the optimal proportion
ψβj . Algorithms satisfying (30) allocate negligible measurement effort to such designs, and therefore
the average measurement effort they receive must decrease toward the optimal proportion.

Lemma 11 (Sufficient condition for optimality). Consider any adaptive allocation rule. If ψn,I∗ →
β and ∑

n∈N
ψn,j1(ψn,j ≥ ψ

β
j + δ) <∞ ∀ j 6= I∗, δ > 0, (30)

then ψn → ψβ.
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Proof. Fix a sample path for which ψn,I∗ → β, and (30) holds. Fix some j 6= I∗. We first show
lim inf
n→∞

ψn,j ≤ ψ∗j . Suppose otherwise. Then, with positive probability, for some δ > 0, there exists
N such that for all n ≥ N , ψn,j ≥ ψ∗j + δ. But then,

∑
n∈N

ψn,j =
N∑
n=1

ψn,j +
∞∑

n=N+1
1(ψn,j ≥ ψ∗j + δ)ψn,j <∞.

But since ψn,j =
∑n
`=1 ψn,j/n this implies ψn,j → 0.

Now, we show lim sup
n→∞

ψn,j ≤ ψ∗j . Proceeding by contradiction again, suppose otherwise. Then,
with positive probability

lim sup
n→∞

ψn,j > ψβj & lim inf
n→∞

ψn,j ≤ ψ
β
j .

On any sample path where this occurs, for some δ > 0, there exists an infinite sequence of times
N1 < N2 < N3 < ... such that ψN`,j ≥ ψβj + 2δ when ` is odd and ψN`,j ≤ ψβj + δ when ` is even.
This can only occur if, ∑

n∈N
ψn,j1(ψn,j ≥ ψ∗j + δ) =∞,

which violates the hypothesis.
Together with the hypothesis that ψn,I∗ → β, this implies that for all i ∈ {1, ..., k}, lim sup

n→∞
ψn,i ≤

ψβi . But since
∑
i ψn,i =

∑
i ψ

β
i , this implies ψn → ψβ.

The next lemma will be used to establish that (30) holds for each of the proposed algorithms.
It shows that if too much measurement effort has been allocated to some design i 6= I∗, in the sense
that ψn,i > ψβi + δ for a constant δ > 0, then αn,i is exponentially small compared maxj 6=I∗ αn,j .

Lemma 12 (Over-allocation implies negligible probability). Fix any δ > 0 and j 6= I∗. With
probability 1, under any allocation rule, if ψn,I∗ → β, there exists δ′ > 0 and a sequence εn with
εn → 0 such that for any n ∈ N,

ψn,j ≥ ψ
β
j + δ =⇒ αn,j

maxi 6=I∗ αn,i
≤ e−n(δ′+εn).

Proof. Since Πn(Θc
I∗) =

∑
i 6=I∗ αn,i, Πn(Θc

I∗)
.= maxi 6=I∗ αn,i. Then, by invoking Proposition (6),

since ψn,I∗ → β,

lim sup
n→∞

− 1
n

log
(

max
i 6=I∗

αn,i

)
≤ Γ∗β.

Recall the definition Θi , {θ|θi ≥ θI∗}. Now, by Proposition 4 and Lemma 1,

αn,j = Πn(Θj) ≤ Πn(Θj)
.= exp{−nCj(ψn,I∗ , ψn,j)}

.= exp{−nCj(β, ψn,j)}.

Combining these equations implies that there exists a non-negative sequence εn → 0 with

αn,j
maxi 6=I∗ αn,i

≤
exp{−n(Cj(β, ψn,j)− εn/2)}

exp{−n(Γ∗β + εn/2)} = exp
{
−n

(
(Cj(β, ψn,j)− Γ∗β)− εn

)}
Since Cj(β, ψj) is strictly increasing in ψj (See lemma 1) and Cj(β, ψβj ) = Γ∗β, there exists some
δ′ > 0 such that

ψn,j ≥ ψ
β
j + δ =⇒ Cj(β, ψn,j)− Γ∗β > δ′.
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The next result builds on Proposition 3. It shows that the quality of any design which receives
infinite measurement effort is identified to arbitrary precision. On the other hand, for designs
receiving finite measurement effort, there is always nonzero probability under the posterior that
one of them significantly exceeds the highest quality that has been confidently identified. Therefore,
αn,i and Vn,i remain bounded away from 0 for designs that receive finite measurement effort. This
result will be used to show that all designs receive infinite measurement effort under the proposed
top-two allocation rules, and as a result the posterior converges on the truth asymptotically.
Lemma 13 (Implications of finite measurement). Let

I = {i ∈ {1, .., k} :
∞∑
n=1

ψn,i <∞}

denote the set of designs to which a finite amount of measurement effort is allocated. Then, for
any i /∈ I

Πn ({θ : θi ∈ (θ∗i − ε, θ∗i + ε))→ 1, (31)
and if I is empty

Vn,i →
{

0 if i 6= I∗

vI∗(θ∗) > 0 if i = I∗
and αn,i →

{
0 if i 6= I∗

1 if i = I∗.

If I is nonempty, then for every i ∈ I,

lim inf
n→∞

αn,i > 0 and lim inf
n→∞

Vn,i > 0.

Proof. Equation (31) is implied by by Proposition 3. Now, set

Θi,ε = {θ ∈ Θ : θi ≥ max
j 6=i

θj + ε}

to be the set of parameters under which the quality of design i exceeds that of all others by at
least ε. Let ρ∗ = maxi/∈I θ∗i denote the quality of the best design among those that are sampled
infinitely often, and choose ε > 0 small enough that ρ∗ + 2ε < θ. For i ∈ I, we have

Πn(Θi,ε) ≥ Πn(A)−Πn (B)

for
A ≡ {θ|θi ≥ ρ∗ + 2ε & θj < ρ∗ ∀j ∈ I \ {i}}

defined to be parameters under which θi ≥ ρ∗ + 2ε but none of the other designs in I exceed ρ∗,
and

B ≡ {θ : max
i/∈I

θi ≥ ρ∗ + ε}

defined to be the parameter vectors under which there is no design in Ic with quality exceeding
ρ∗ + ε. By (31),

Πn (B)→ 0,
but by the second part of Proposition 3, the set of parameters A cannot be completely ruled based
on a finite amount of measurement effort, and

inf
n∈N

Πn(A) > 0.

Together this shows
lim inf
n→∞

Πn(Θi,ε) > 0,

which implies the result.
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G.2 Results specific to the proposed algorithms

We now leverage the general results of the previous subsection to show ψ → ψβ under each proposed
top-two allocation rule. Proofs are provided separately for each of the three algorithms, but they
follow a similar structure. In the first step, we use Lemma 13 to argue that ψn,I∗ → β almost
surely. The proof then uses Lemma 12 to show (30) holds, which by Lemma 11 is sufficient to
establish that ψn → ψβ.

G.2.1 Top-Two Thompson Sampling

Recall that under top-two Thompson sampling, for every i ∈ {1, ..., k},

ψn,i = αn,i

β + (1− β)
∑
j 6=i

αn,j
1− αn,j

 .
Proof for TTTS.
Step 1: Show ψn,I∗ → β. To begin, we show

∑
n∈N ψn,i =∞ for each design i. Suppose otherwise.

Let I = {i ∈ {1, .., k} :
∑∞

1 ψn,i < ∞} be the set of designs to which finite measurement effort is
allocated. Under the TTTS sampling rule, ψn,i ≥ βαn,i. Therefore, by Lemma 13, if i ∈ I then
lim inf
n→∞

αn,i > 0, which implies
∑
n∈N ψn,i =∞, a contradiction.

Since
∑∞

1 ψn,i = ∞ for all i, by applying Lemma 13 we conclude that αn,I∗ → 1. For TTTS,
this implies ψn,I∗ → β.

Step 2: Show (30) holds. By Lemma 11, it is enough to show that (30) holds under TTTS.
Let În = arg maxi αn,i, and Ĵn = arg maxi 6=În αn,i. Since αn,I∗ → 1, for each sample path there is
a finite time τ < ∞ such that for all n ≥ τ , În = I∗ and therefore Ĵn = arg maxi 6=I∗ αn,i. Under
TTTS,

ψn,i ≤ βαn,i + (1− β) αn,i
αn,Jn

≤ αn,i
αn,Jn

,

where the first inequality follows since

∑
j 6=i

αn,j
1− αn,j

≤
∑
j 6=i αn,i

1− αn,În
≤
∑
j 6=i αn,j

αn,Ĵn
≤ 1
αn,Ĵn

.

For n ≥ τ , this means ψn,i ≤ αn,i/(maxj 6=I∗ αn,i) for any i 6= I∗. By Lemma 12, there is a constant
δ′ > 0 and a sequence εn → 0 such that

ψn,i ≥ ψ
β
i + δ =⇒ αn,i

maxj 6=I∗ αn,j
≤ e−n(δ′−εn).

Therefore for all i 6= I∗ ∑
n≥τ

ψn,i1(ψn,i ≥ ψ
β
i + δ) ≤

∑
n≥τ

e−n(δ′−εn) <∞.
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G.2.2 Top-Two Probability Sampling

Recall that top-two probability sampling sets ψn,În = β and ψn,Ĵn = 1−β where În = arg maxi αn,i
and Ĵn = arg maxj 6=În αn,i are the two designs with the highest posterior probability of being
optimal.

Proof for TTPS.
Step 1: Show ψn,I∗ → β. To begin, we show

∑
n∈N ψn,i =∞ for each design i. Suppose otherwise.

Let I = {i ∈ {1, .., k} :
∑∞

1 ψn,i < ∞} be the set of designs to which finite measurement effort is
allocated. Proceeding by contradiction, suppose I is nonempty. By Lemma 13, there is a time τ
and some probability α′ > 0 such that αn,i > α′ for all n ≥ τ and i ∈ I. However, because of the
assumption that θ∗i 6= θ∗j , for i 6= j, I = arg maxi/∈I θ∗i is unique. By (31), the algorithm identifies
arg maxi/∈I θ∗i with certainty, and αn,i → 0 for every i /∈ I except for I. This means there is a time
τ ′ > τ such that for n ≥ τ ′

αn,i > α′ if i ∈ I
αn,i ≤ α′ if i /∈ I and i 6= I.

When this occurs at least one of the two designs with highest probability αn,i of being optimal
must be in the set I, which implies designs in I receive infinite measurement effort, yielding a
contradiction.

Since
∑∞

1 ψn,i = ∞ for all i, Lemma 13 implies αn,I∗ → 1. Therefore, there is a finite time τ
such that În , arg maxi αn,i = I∗ for all n ≥ τ . By the definition of the algorithm ψn,În = β, and
so ψn,I∗ = β for all n ≥ τ . We conclude that ψn,I∗ → β.

Step 2: Show (30) holds. As argued above, for each sample path there is a finite time τ < ∞
such that for all n ≥ τ , În = I∗ and therefore Ĵn = arg maxi 6=I∗ αn,i. By Lemma 12, one can choose
τ ′ ≥ τ such that for all n ≥ τ ′,

ψn,j ≥ ψ
β
j + δ =⇒ αn,j < max

i 6=I∗
αn,i

and therefore by definition Ĵn 6= j. This concludes the proof, as it shows that for each sample path
there is a finite time τ ′ after which TTPS never allocates any measurement effort to design j when
ψn,j ≥ ψ

β
j + δ.

G.2.3 Top-Two Value Sampling

Recall that top-two value sampling sets and ψn,În = β and ψn,Ĵn = 1− β where În = arg maxi Vn,i
and Ĵn = arg maxj 6=În Vn,i are the two designs with the highest posterior value.

Proof for TTVS. Step 1: Show ψn,I∗ → β. The proof is essentially identical to that for TTPS.To
begin, we show

∑
n∈N ψn,i = ∞ for each design i. Suppose otherwise. Let I = {i ∈ {1, .., k} :∑∞

1 ψn,i < ∞} be the set of designs to which finite measurement effort is allocated. Proceeding
by contradiction, suppose I is nonempty. By Lemma 13, there is a time τ and some v > 0 such
that Vn,i > v for all n ≥ τ and i ∈ I. However, because of the assumption that θ∗i 6= θ∗j , for i 6= j,
I = arg maxi/∈I θ∗i is unique3. By (31), the algorithm identifies arg maxi/∈I θ∗i with certainty, and

3If the arg-max is not unique, then one could show that Vn,i → 0 for all i /∈ I, and that therefore there is a finite
time after both of the top-two designs are always in the set I, yielding a contradiction
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Vn,i → 0 for every i /∈ I except for I. Then there is a time τ ′ > τ such that for n ≥ τ ′

Vn,i > v if i ∈ I
Vn,i ≤ v if i /∈ I and i 6= I∗.

When this occurs at least one of the two designs with highest value Vn,i must be in the set I, which
implies designs in I receive infinite measurement effort, yielding a contradiction.

Since
∑∞

1 ψn,i =∞ for all i, Lemma 13 implies Vn,I∗ → vI∗(θ∗) > 0 and Vn,i → 0 for all i 6= I∗.
Therefore, there is a finite time τ such that arg maxi Vn,i = I∗ for all τ ≥ n. By the definition
of the algorithm arg maxi Vn,i is sampled with probability β, and so ψn,I∗ = β for all n ≥ τ . We
conclude that ψn,I∗ → β.

Step 2: Show (30) holds. Again, the proof is essentially identical to that for TTPS. As argued
above, for each sample path there is a finite time τ < ∞ such that for all n ≥ τ , În = I∗ and
therefore Ĵn = arg maxi 6=I∗ Vn,i. By Lemma 3, Vn,i

.= αn,i. Combining this with Lemma 12 shows
one can choose τ ′ ≥ τ such that for all n ≥ τ ′,

ψn,j ≥ ψ
β
j + δ =⇒ Vn,j < max

i 6=I∗
Vn,i

and therefore by definition Ĵn 6= j. This concludes the proof, as it shows that for each sample path
there is a finite time τ ′ after which TTVS never allocates any measurement effort to design j 6= I∗

when ψn,j ≥ ψ
β
j + δ.
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